stats265
version
一個PIP軟件包,希望將擁有STATS265(Stats 1)的所有分佈 - Ualberta即將
現在:
如果您像往常一樣厭惡風險,可以先在虛擬環境上嘗試
使用Unittest庫進行測試https://docs.python.org/3/library/unittest.html
* Calling a distribution
* from stats265 import Bernoulli
* g = Bernolli(p = 0.7)
* from stats265 import Gaussian
* g = Gaussian(mean, stdev)
* from stats265 import Binomial
* g = Binomial(p = 0.7, n = 20)
* from stats265 import Poisson
* g = Poisson(mean)
* Methods of distributions (varies for obvious reasons)
* read_data_file(file_name)
reads the data in said file into our object, and now we can play around with the data
* calculate_mean()
calculates and returns the mean
* calculate_stdev()
calculates and returns the standard deviation of the distribution
* plot_histogram()
plots a histogram of the data
* pdf(x)
returns probability density function for a value x
* plot_histogram_pdf()
Plots histogram of data and pdf
* Distribution_1 + Distribution_2 (__add__)
Add a two distributions
same type only for now
* print(Distribution) (__repr__)
Allows for representation on a print call
安裝:
依賴性: