vocos mlx
0.0.7
使用MLX框架實現VOCOS。 VOCOS允許從MEL頻譜圖或Encodec代幣中高質量重建音頻。
紙[ABS] [PDF]
要在推理模式下使用VOCOS,請使用:
pip install vocos-mlx from vocos_mlx import Vocos , load_audio , log_mel_spectrogram
vocos = Vocos . from_pretrained ( "lucasnewman/vocos-mel-24khz" )
# reconstruct
audio = load_audio ( "audio.wav" , 24_000 )
reconstructed_audio = vocos ( audio )
# decode from mel spec
mel_spec = log_mel_spectrogram ( audio , n_mels = 100 )
decoded_audio = vocos . decode ( mel_spec ) from vocos_mlx import Vocos , load_audio
vocos = Vocos . from_pretrained ( "lucasnewman/vocos-encodec-24khz" )
# reconstruct
audio = load_audio ( "audio.wav" , 24_000 )
reconstructed_audio = vocos ( audio , bandwidth_id = 3 )
# decode with encodec codes
codes = vocos . get_encodec_codes ( audio , bandwidth_id = 3 )
decoded_audio = vocos . decode_from_codes ( codes , bandwidth_id = 3 )AWNI HANNUN用於MLX的參考Encodec實現。
@article{siuzdak2023vocos,
title={Vocos: Closing the gap between time-domain and Fourier-based neural vocoders for high-quality audio synthesis},
author={Siuzdak, Hubert},
journal={arXiv preprint arXiv:2306.00814},
year={2023}
}
該存儲庫中的代碼按照許可證文件中的MIT許可發布。