Context based document search
1.0.0
該項目提供了一個系統,用於跨矢量數據庫中存儲的文檔執行基於上下文的搜索。使用OpenAI的嵌入模型和色度,此工具可讓您有效地通過文本文檔的集合進行搜索,並根據給定的查詢檢索最相關的結果。
Python 3.7或更高
OpenAI API鍵
通過運行安裝所需的軟件包:
pip install -r requirements.txtgit clone https://github.com/your-username/contextual-documents-search.git cd contextual-documents-searchpython -m venv venv
source venv/bin/activate # On Windows: venvScriptsactivatepip install -r requirements.txtOPENAI_API_KEY = your_openai_api_key準備要搜索的.txt文件的目錄,並將其放置在./resumes文件夾中或指定代碼中的其他目錄。
在您的主腳本中,實例化VectorDBHandler類,並調用load_or_create_db()以初始化矢量存儲。
from dotenv import load_dotenv
from vector_db_handler import VectorDBHandler
# Load environment variables
load_dotenv ()
# Set up directory paths and collection name
files_directory = "./resumes"
persist_directory = "./vector_db"
collection_name = "resumes_collection"
# Initialize the vector database handler
vector_db_handler = VectorDBHandler ( files_directory , persist_directory , collection_name )
# Load or create the vector store database
vector_db_handler . load_or_create_db ()
# Define the query for the search
query = "I am looking for a software engineer with OpenAI hard skill."
docs = vector_db_handler . query_vector_store ( query )
# Output the top result
if docs :
print ( "Top matching document:" )
print ( docs [ 0 ]. page_content )
else :
print ( "No matching documents found." )