Context based document search
1.0.0
该项目提供了一个系统,用于跨矢量数据库中存储的文档执行基于上下文的搜索。使用OpenAI的嵌入模型和色度,此工具可让您有效地通过文本文档的集合进行搜索,并根据给定的查询检索最相关的结果。
Python 3.7或更高
OpenAI API键
通过运行安装所需的软件包:
pip install -r requirements.txtgit clone https://github.com/your-username/contextual-documents-search.git cd contextual-documents-searchpython -m venv venv
source venv/bin/activate # On Windows: venvScriptsactivatepip install -r requirements.txtOPENAI_API_KEY = your_openai_api_key准备要搜索的.txt文件的目录,并将其放置在./resumes文件夹中或指定代码中的其他目录。
在您的主脚本中,实例化VectorDBHandler类,并调用load_or_create_db()以初始化矢量存储。
from dotenv import load_dotenv
from vector_db_handler import VectorDBHandler
# Load environment variables
load_dotenv ()
# Set up directory paths and collection name
files_directory = "./resumes"
persist_directory = "./vector_db"
collection_name = "resumes_collection"
# Initialize the vector database handler
vector_db_handler = VectorDBHandler ( files_directory , persist_directory , collection_name )
# Load or create the vector store database
vector_db_handler . load_or_create_db ()
# Define the query for the search
query = "I am looking for a software engineer with OpenAI hard skill."
docs = vector_db_handler . query_vector_store ( query )
# Output the top result
if docs :
print ( "Top matching document:" )
print ( docs [ 0 ]. page_content )
else :
print ( "No matching documents found." )