GeoAB
1.0.0
安裝要求
conda create -n geoab python==3.9
conda activate geoab
pip install -r requirements.txt
請按照Dymean中的數據準備腳本進行操作,該腳本將原始數據集帶動為
- all_data
- RAbD_H3
- test_processed
_metainfo
part_0.pkl
- train_processed
...
- valid_processed
...
test.json
train.json
valid.json
- SKEMPI
...
可以從Google Drive https://drive.google.com/drive/folders/1pnsogt0gdijr9emmmp2pitjzdulzi3gg下載處理後的數據。下載all_data.zip後,可以將其解壓縮並獲得處理後的數據集。
運行以下命令進行培訓:
# Train GeoAB-refiner
python train_refine.py
# Train GeoAB-Initializer
python train_init.py
# After GeoAB-Initializer is trained, train GeoAB-Designer
python train_design.py
為了進行評估,請運行以下命令:
# Evaluate GeoAB-Refiner
python eval.py --eval_dir H3_refine --run 1
# Evaluate GeoAB-Designer
python eval.py --eval_dir H3_design
我們在cdrh3.zip中提供了驗證的模型,可以從https://drive.google.com/drive/folders/1pnsogt0gdijr9emmmmmmmp2pitjzdulzi3gg下載。您可以使用我們驗證的模型直接評估結果。
對於DDG預測部分,我們的模型將通過平台進行更新,該平台將很快在線。
如果存儲庫或紙張對您有所幫助,請引用紙張
@article {lin2024geoab,
author = {Lin, Haitao and Wu, Lirong and Huang, Yufei and Liu, Yunfan and Zhang, Odin and Zhou, Yuanqing and Sun, Rui and Li, Stan Z.},
title = {GeoAB: Towards Realistic Antibody Design and Reliable Affinity Maturation},
year = {2024},
booktitle={International Conference on Machine Learning},
URL = {https://www.biorxiv.org/content/early/2024/05/17/2024.05.15.594274},
eprint = {https://www.biorxiv.org/content/early/2024/05/17/2024.05.15.594274.full.pdf}
}