GeoAB
1.0.0
安装要求
conda create -n geoab python==3.9
conda activate geoab
pip install -r requirements.txt
请按照Dymean中的数据准备脚本进行操作,该脚本将原始数据集带动为
- all_data
- RAbD_H3
- test_processed
_metainfo
part_0.pkl
- train_processed
...
- valid_processed
...
test.json
train.json
valid.json
- SKEMPI
...
可以从Google Drive https://drive.google.com/drive/folders/1pnsogt0gdijr9emmmp2pitjzdulzi3gg下载处理后的数据。下载all_data.zip后,可以将其解压缩并获得处理后的数据集。
运行以下命令进行培训:
# Train GeoAB-refiner
python train_refine.py
# Train GeoAB-Initializer
python train_init.py
# After GeoAB-Initializer is trained, train GeoAB-Designer
python train_design.py
为了进行评估,请运行以下命令:
# Evaluate GeoAB-Refiner
python eval.py --eval_dir H3_refine --run 1
# Evaluate GeoAB-Designer
python eval.py --eval_dir H3_design
我们在cdrh3.zip中提供了验证的模型,可以从https://drive.google.com/drive/folders/1pnsogt0gdijr9emmmmmmmp2pitjzdulzi3gg下载。您可以使用我们验证的模型直接评估结果。
对于DDG预测部分,我们的模型将通过平台进行更新,该平台将很快在线。
如果存储库或纸张对您有所帮助,请引用纸张
@article {lin2024geoab,
author = {Lin, Haitao and Wu, Lirong and Huang, Yufei and Liu, Yunfan and Zhang, Odin and Zhou, Yuanqing and Sun, Rui and Li, Stan Z.},
title = {GeoAB: Towards Realistic Antibody Design and Reliable Affinity Maturation},
year = {2024},
booktitle={International Conference on Machine Learning},
URL = {https://www.biorxiv.org/content/early/2024/05/17/2024.05.15.594274},
eprint = {https://www.biorxiv.org/content/early/2024/05/17/2024.05.15.594274.full.pdf}
}