这是个常见的面试题,比如说通过二叉树的先序和中序遍历,得到二叉树的层序遍历等问题
先序+中序->建树
假设现在有个二叉树,如下:
此时遍历顺序是:
PreOrder: GDAFEMHZ InOrder: ADEFGHMZ PostOrder: AEFDHZMG
现在给出先序(preOrder)和中序(InOrder),建立一颗二叉树
或者给出中序(InOrder)和后序(PostOrder), 建立二叉树,其实是一样的
树节点的定义:
class Tree{char val;Tree left;Tree right;Tree(char val, Tree left, Tree right){this.val = val;this.left = left;this.right = right;}Tree(){}Tree(char val){this.val = val;this.left = null;this.right =null;}}建树:
public static Tree buildTree(char[] preOrder, char[] inOrder){//preOrder是先序序列//inOrder是中序序列if(preOrder == null || preOrder.length == 0){return null;}Tree root = new Tree(preOrder[0]);//找到inOrder中的root的位置int inOrderIndex = 0;for (char i = 0; i < inOrder.length; i++){if(inOrder[i] == root.val){inOrderIndex = i;}}//preOrder的左子树和右子树部分char[] preOrderLeft = Arrays.copyOfRange(preOrder, 1, 1+inOrderIndex);char[] preOrderRight = Arrays.copyOfRange(preOrder, 1+inOrderIndex, preOrder.length);//inOrder的左子树和右子树部分char[] inOrderLeft = Arrays.copyOfRange(inOrder, 0, inOrderIndex);char[] inOrderRight = Arrays.copyOfRange(inOrder, inOrderIndex+1, inOrder.length);//递归建立左子树和右子树Tree leftChild = buildTree(preOrderLeft, inOrderLeft);Tree rightChild = buildTree(preOrderRight, inOrderRight);root.left = leftChild;root.right = rightChild;return root;}中序+后序去建树其实是一样的,此处不写了
各种遍历
后序遍历
public static void postOrderPrint(Tree root){ //后续遍历 //左右根 if(root.left != null){ postOrderPrint(root.left); } if(root.right != null){ postOrderPrint(root.right); } System.out.print(root.val + " "); }举一反三,先序和中序是一样的,此处不写了
层序遍历
可以用一个队列Queue,初始先把root节点加入到队列,当队列不为空的时候取队列头的节点node,打印node的节点值,如果node的左右孩子不为空将左右孩子加入到队列中即可
public static void layerOrderPrint(Tree root){ if(root == null){ return; } //层序遍历 Queue<Tree> qe = new LinkedList<Tree>(); qe.add(root); while(!qe.isEmpty()){ Tree node = qe.poll(); System.out.print(node.val + " "); if(node.left != null){ qe.add(node.left); } if(node.right != null){ qe.add(node.right); } } }深度优先和广度优先
其实就是换个说法而已,深度优先不就是先序遍历嘛,广度优先就是层序遍历
public static void deepFirstPrint(Tree root){ //深度优先遍历等价于先序遍历 //所以可以直接使用先序遍历 if(root == null){ return; } System.out.print(root.val + " "); if(root.left != null){ deepFirstPrint(root.left); } if(root.right != null){ deepFirstPrint(root.right); } }public static void deepFirstPrintNoneRec(Tree root){ //深度优先遍历的非递归形式 if(root == null){ return; } Stack<Tree> st = new Stack<Tree>(); st.add(root); while(!st.isEmpty()){ Tree node = st.pop(); System.out.print(node.val + " "); //栈是后进先出的 //先加右孩子后加左孩子 if(node.right != null){ st.add(node.right); } if(node.left != null){ st.add(node.left); } } }main函数:
public static void main(String[] args) { char[] preOrder = "GDAFEMHZ".toCharArray(); char[] inOrder = "ADEFGHMZ".toCharArray(); Tree root = Main.buildTree(preOrder, inOrder);// Main.postOrderPrint(root); //后序遍历// Main.layerOrderPrint(root); //层序遍历// Main.deepFirstPrint(root); //深度优先遍历// Main.deepFirstPrintNoneRec(root); //深度优先遍历的非递归版本 }总结
以上就是本文关于Java中二叉树的建立和各种遍历实例代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:
《Java编程求二叉树的镜像两种方法介绍》
《Java语言描述二叉树的深度和宽度》
《Java二叉树路径和代码示例》
如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!