sentiment_analysis_fine_grain
1.0.0
使用此存储库,您将能够使用Bert训练多标签分类
部署BERT进行在线预测。
您还可以找到有关如何与中文使用Bert的简短教程:Bert Short Chinese教程
您可以从AI Challenger中找到对谷物情绪的介绍
在这里添加一些东西。

有关更多信息,请检查模型/bert_cnn_fine_grain_model.py
| 模型 | textcnn(无预告片) | textcnn(预处理) | bert(base_model_zh) | bert(base_model_zh,在语料库上的预训练) |
|---|---|---|---|---|
| F1得分 | 0.678 | 0.685 | 在这里添加一个号码 | 在这里添加一个号码 |
注意:F1分数在验证集上报告

export BERT_BASE_DIR=BERT_BASE_DIR/chinese_L-12_H-768_A-12
export TEXT_DIR=TEXT_DIR
nohup python run_classifier_multi_labels_bert.py
--task_name=sentiment_analysis
--do_train=true
--do_eval=true
--data_dir=$TEXT_DIR
--vocab_file=$BERT_BASE_DIR/vocab.txt
--bert_config_file=$BERT_BASE_DIR/bert_config.json
--init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt
--max_seq_length=512
--train_batch_size=4
--learning_rate=2e-5
--num_train_epochs=3
--output_dir=./checkpoint_bert &
1.首先,您需要从Google下载预训练的模型,然后放入文件夹(egbert_base_dir)
chinese_L-12_H-768_A-12 from <a href='https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-12_H-768_A-12.zip'>bert</a>
2.第二,您需要拥有培训数据(例如Train.TSV)和验证数据(例如Dev.TSV),然后将其放在
folder(e.g.TEXT_DIR ). you can also download data from here <a href='https://pan.baidu.com/s/1ZS4dAdOIAe3DaHiwCDrLKw'>data to train bert for AI challenger-Sentiment Analysis</a>.
it contains processed data you can run for both fine-tuning on sentiment analysis and pre-train with Bert.
it is generated by following this notebook step by step:
preprocess_char.ipynb
you can generate data by yourself as long as data format is compatible with
processor SentimentAnalysisFineGrainProcessor(alias as sentiment_analysis);
data format: label1,label2,label3t here is sentence or sentencest
it only contains two columns, the first one is target(one or multi-labels), the second one is input strings.
no need to tokenized.
sample:"0_1,1_-2,2_-2,3_-2,4_1,5_-2,6_-2,7_-2,8_1,9_1,10_-2,11_-2,12_-2,13_-2,14_-2,15_1,16_-2,17_-2,18_0,19_-2 浦东五莲路站,老饭店福瑞轩属于上海的本帮菜,交通方便,最近又重新装修,来拨草了,饭店活动满188元送50元钱,环境干净,简单。朋友提前一天来预订包房也没有订到,只有大堂,五点半到店基本上每个台子都客满了,都是附近居民,每道冷菜量都比以前小,味道还可以,热菜烤茄子,炒河虾仁,脆皮鸭,照牌鸡,小牛排,手撕腊味花菜等每道菜都很入味好吃,会员价划算,服务员人手太少,服务态度好,要能团购更好。可以用支付宝方便"
check sample data in ./BERT_BASE_DIR folder
for more detail, check create_model and SentimentAnalysisFineGrainProcessor from run_classifier.py
生成原始数据:[在这里添加一些东西]
确保每行都是句子。在每个文档之间都有一个空白行。
您可以从zip文件中找到生成的数据。
use write_pre_train_doc() from preprocess_char.ipynb
使用以下方式生成用于培训阶段的数据:
export BERT_BASE_DIR=./BERT_BASE_DIR/chinese_L-12_H-768_A-12
nohup python create_pretraining_data.py
--input_file=./PRE_TRAIN_DIR/bert_*_pretrain.txt
--output_file=./PRE_TRAIN_DIR/tf_examples.tfrecord
--vocab_file=$BERT_BASE_DIR/vocab.txt
--do_lower_case=True
--max_seq_length=512
--max_predictions_per_seq=60
--masked_lm_prob=0.15
--random_seed=12345
--dupe_factor=5 nohup_pre.out &
带有生成数据的预训练模型:
python run_pretraining.py
微调
python run_classifier.py
下载情感分析的缓存文件(令牌处于单词级别)
训练模型:
python train_cnn_fine_grain.py
cache file of TextCNN model was generate by following steps from preprocess_word.ipynb.
it contains everything you need to run TextCNN.
it include: processed train/validation/test set; vocabulary of word; a dict map label to index.
take train_valid_test_vocab_cache.pik and put it under folder of preprocess_word/
raw data are also included in this zip file.
带有蒙版语言模型的预训练文本
python train_cnn_lm.py
textcnn的微调
python train_cnn_fine_grain.py
with session and feed style you can easily deploy BERT.
与伯特的在线预测,从这里检查更多
双向编码器表示来自变形金刚的语言理解
Google-Research/Bert
Pengshuang/ai-comp
AI挑战者2018
句子分类的卷积神经网络