
“无线变得容易!” - 将Lora点对点连接添加到现有的Lorawan应用程序

在遵守这些条款的情况下,您可以使用Microchip软件和任何衍生品与Microchip产品一起使用。您有责任遵守适用于您使用Microchip软件的第三方软件(包括开源软件)的第三方许可条款。
该软件由Microchip“原样”提供。无明确,隐含或法定的保证适用于本软件,包括对特定目的的任何不侵权,适销性和适用性的任何暗示担保。
在任何情况下,微芯片都不会对任何与软件相关的任何间接,特殊,惩罚性,偶然或结果损失,损害,成本或费用的责任,即使已告知Microchip可能性或损害赔偿。在法律允许的最大范围内,Microchip以与本软件有关的任何方式对所有索赔的总责任都不会超过您直接向Microchip支付此软件的费用(如果有)。
在洛拉论坛上与您的同行互动有关此软件的互动。
基于从ASFV3生成的Lorawan Mote应用程序,该示例代码证明了Lorawan应用程序的共存以及使用LORA调制的2x ATSAMR34 XPLED PRO板之间的纯无线电通信。
有关Microchip ATSAMR34 Lora SIP设备的更多信息,请访问Microchip网页:
https://www.microchip.com/design-centers/wireless-connectivity/low-power-wide-area-networks/lora-technology/sam-r34-r35

ATSAMR34 XPLAINE PRO评估套件是一个硬件平台,用于评估ATSAMR34 Low PowerLora®Sub-GHz SIP。它由Microchip Studio 7.0 IDE支持,自3.44.0发布以来,可从高级软件框架(ASFV3)获得示例代码的集合。 Xplained Pro MCU系列评估套件包括一个嵌入式调试器(EDBG),并且不需要外部工具来编程或调试ATSAMR34。该套件提供了一套功能,使用户能够立即使用ATSAMR34低功率Lora®Sub-GHz SIP外围设备,并了解如何将设备集成在您自己的设计中。 ATSAMR34 XPLAINE PRO套件包含以下项目:

为了展示点对点交流,您确实需要至少2倍ATSAMR34 XPLE的专业板。
该项目集成了Microchip Lorawan堆栈(MLS)软件API,该软件为不同的软件模块提供了接口。
对于此应用程序,我们将“暂停” Lorawan Mac层(MAC),并使用Lorawan无线电层(TAL)进行点对点通信,并“恢复” Lorawan Mac层来执行Lorawan操作。
在对等配置中,Lorawan MAC层被绕过,并让无线电驱动无需协议,没有安全性,没有设备的唯一标识符,并且显然没有互操作性和生态系统(与Lorawan相反)。这可以证明在Lorawan应用程序中使用P2P通信的能力。
请确保不要违反相应频段的本地法规。例如,欧洲内部868MHz波段的25MW和1%的占空比。

MAC层提供了Lorawan规范中定义的操作的功能。
TAL层使用无线电驱动程序,并提供对SX1276收发器的访问权限。
为了能够设置设备的点与点连接,代码需要:
void LORAWAN_Init(AppDataCb_t appdata, JoinResponseCb_t joindata);
StackRetStatus_t LORAWAN_Reset (IsmBand_t ismBand);
uint32_t LORAWAN_Pause (void);
RadioError_t RADIO_SetAttr(RadioAttribute_t attribute, void *value);
RADIO_SetAttr(WATCHDOG_TIMEOUT,(void *)&wdt) ;
RadioError_t RADIO_Receive(RadioReceiveParam_t *param);
此函数将设备设置为接收模式,以接收数据并将其存储在“ Radio_RxHandler”任务帖子中。
RadioError_t RADIO_Transmit(RadioTransmitParam_t *param);
此功能通过将任务帖子执行到Radio_TXHandler来传输数据。
对于点对点通信,示例代码使用以下参数配置收音机:
typedef enum _AppTaskIds_t
{
DISPLAY_TASK_HANDLER,
PROCESS_TASK_HANDLER,
APP_TASKS_COUNT
}AppTaskIds_t;
typedef enum _AppTaskState_t
{
RESTORE_BAND_STATE,
DEMO_CERT_APP_STATE,
DEMO_APP_STATE,
JOIN_SEND_STATE
}AppTaskState_t;
static SYSTEM_TaskStatus_t (*appTaskHandlers[APP_TASKS_COUNT])(void) = {
/* In the order of descending priority */
displayTask,
processTask
};
appTaskState = JOIN_SEND_STATE;
appPostTask(DISPLAY_TASK_HANDLER);
/*********************************************************************//**
brief Calls appropriate functions based on state variables
*************************************************************************/
static SYSTEM_TaskStatus_t displayTask(void)
{
switch(appTaskState)
{
case RESTORE_BAND_STATE:
displayRunRestoreBand();
break;
case DEMO_CERT_APP_STATE:
displayRunDemoCertApp();
break;
case DEMO_APP_STATE:
displayRunDemoApp();
break;
case JOIN_SEND_STATE:
displayJoinAndSend();
break;
default:
printf("Error STATE Enteredrn");
break;
}
return SYSTEM_TASK_SUCCESS;
}
/*********************************************************************//**
brief Displays and activates LED's for joining to a network
and sending data to a network
*************************************************************************/
static void displayJoinAndSend(void)
{
printf("rn1. Send Join Requestrn");
printf("2. Send Datarn");
// new menu with p2p
printf("3. Main Menurn") ;
printf("4. MAC Pausern") ;
printf("5. MAC Resumern") ;
printf("6. Configure Radiorn") ;
printf("7. Send Radio Datarn") ;
printf("8. Enter Radio Receive modern") ;
printf("9. Exit Radio Receive modern") ;
#ifdef CONF_PMM_ENABLE
printf("0. Sleeprn") ;
#endif
printf("rnEnter your choice: ");
set_LED_data(LED_AMBER,&off);
set_LED_data(LED_GREEN,&off);
startReceiving = true;
}
/*********************************************************************//**
brief Pulls the data from UART when activated
*************************************************************************/
void serial_data_handler(void)
{
int rxChar;
char serialData;
/* verify if there was any character received*/
if (startReceiving == true)
{
if((-1) != (rxChar = sio2host_getchar_nowait()))
{
serialData = (char)rxChar;
if((serialData != 'r') && (serialData != 'n') && (serialData != 'b'))
{
startReceiving = false;
serialBuffer = rxChar;
appPostTask(PROCESS_TASK_HANDLER);
printf("rn");
}
}
}
}
/*********************************************************************//**
brief Calls appropriate functions based on state variables
*************************************************************************/
static SYSTEM_TaskStatus_t processTask(void)
{
switch(appTaskState)
{
case RESTORE_BAND_STATE:
processRunRestoreBand();
break;
case DEMO_CERT_APP_STATE:
processRunDemoCertApp();
break;
case DEMO_APP_STATE:
processRunDemoApp();
break;
case JOIN_SEND_STATE:
processJoinAndSend();
break;
default:
printf("Error STATE Enteredrn");
break;
}
return SYSTEM_TASK_SUCCESS;
}
/*********************************************************************//**
brief Sends Join request or Data to the network
*************************************************************************/
static void processJoinAndSend(void)
{
StackRetStatus_t status = LORAWAN_SUCCESS;
if(serialBuffer == '1')
{
status = LORAWAN_Join(DEMO_APP_ACTIVATION_TYPE);
if (LORAWAN_SUCCESS == (StackRetStatus_t)status)
{
set_LED_data(LED_GREEN,&on);
printf("nJoin Request Sentnr");
}
else
{
set_LED_data(LED_AMBER,&on);
print_stack_status(status);
appTaskState = JOIN_SEND_STATE;
appPostTask(DISPLAY_TASK_HANDLER);
}
}
else if(serialBuffer == '2' && joined == true)
{
sendData();
}
else if(serialBuffer == '2' && !joined)
{
set_LED_data(LED_AMBER,&on);
printf("Device not joined to the networkrn");
appTaskState = JOIN_SEND_STATE;
appPostTask(DISPLAY_TASK_HANDLER);
}
#ifdef CONF_PMM_ENABLE
else if(serialBuffer == '0')
{
static bool deviceResetsForWakeup = false;
PMM_SleepReq_t sleepReq;
/* Put the application to sleep */
sleepReq.sleepTimeMs = DEMO_CONF_DEFAULT_APP_SLEEP_TIME_MS;
sleepReq.pmmWakeupCallback = appWakeup;
sleepReq.sleep_mode = CONF_PMM_SLEEPMODE_WHEN_IDLE;
if (CONF_PMM_SLEEPMODE_WHEN_IDLE == SLEEP_MODE_STANDBY)
{
deviceResetsForWakeup = false;
}
if (true == LORAWAN_ReadyToSleep(deviceResetsForWakeup))
{
app_resources_uninit();
if (PMM_SLEEP_REQ_DENIED == PMM_Sleep(&sleepReq))
{
HAL_Radio_resources_init();
sio2host_init();
appTaskState = JOIN_SEND_STATE;
appPostTask(DISPLAY_TASK_HANDLER);
printf("rnsleep_not_okrn");
}
}
else
{
printf("rnsleep_not_okrn");
appTaskState = JOIN_SEND_STATE;
appPostTask(DISPLAY_TASK_HANDLER);
}
}
#endif
else if (serialBuffer == '3')
{
// main menu
appTaskState = DEMO_APP_STATE;
appPostTask(DISPLAY_TASK_HANDLER);
}
else if (serialBuffer == '4')
{
// Pause the Microchip LoRaWAN Stack
uint32_t time_ms ;
time_ms = LORAWAN_Pause() ;
printf("rnMAC Pause %ldrn", time_ms) ;
appTaskState = JOIN_SEND_STATE ;
appPostTask(DISPLAY_TASK_HANDLER) ;
}
else if (serialBuffer == '5')
{
// Resume the Microchip LoRaWAN Stack
LORAWAN_Resume() ;
printf("rnMAC Resumern") ;
appTaskState = JOIN_SEND_STATE ;
appPostTask(DISPLAY_TASK_HANDLER) ;
}
else if (serialBuffer == '6')
{
// Configure Radio Parameters
// --------------------------
// Bandwidth = BW_125KHZ
// Channel frequency = FREQ_868100KHZ
// Channel frequency deviation = 25000
// CRC = enabled
// Error Coding Rate = 4/5
// IQ Inverted = disabled
// LoRa Sync Word = 0x34
// Modulation = LoRa
// PA Boost = disabled (disabled for EU , enabled for NA)
// Output Power = 1 (up to +14dBm for EU / up to +20dBm for NA)
// Spreading Factor = SF7
// Watchdog timeout = 60000
// Bandwidth
RadioLoRaBandWidth_t bw = BW_125KHZ ;
RADIO_SetAttr(BANDWIDTH, &bw) ;
printf("Configuring Radio Bandwidth: 125kHzrn") ;
// Channel Frequency
uint32_t freq = FREQ_868100KHZ ;
RADIO_SetAttr(CHANNEL_FREQUENCY, &freq) ;
printf("Configuring Channel Frequency %ldrn", freq) ;
// Channel Frequency Deviation
uint32_t fdev = 25000 ;
RADIO_SetAttr(CHANNEL_FREQUENCY_DEVIATION, &fdev) ;
printf("Configuring Channel Frequency Deviation %ldrn", fdev) ;
// CRC
uint8_t crc_state = 1 ;
RADIO_SetAttr(CRC, &crc_state) ;
printf("Configuring CRC state: %drn", crc_state) ;
// Error Coding Rate
RadioErrorCodingRate_t cr = CR_4_5 ;
RADIO_SetAttr(ERROR_CODING_RATE, &cr) ;
printf("Configuring Error Coding Rate 4/5rn") ;
// IQ Inverted
uint8_t iqi = 0 ;
RADIO_SetAttr(IQINVERTED, &iqi) ;
printf("Configuring IQ Inverted: %drn", iqi) ;
// LoRa Sync Word
uint8_t sync_word = 0x34 ;
RADIO_SetAttr(LORA_SYNC_WORD, &sync_word) ;
printf("Configuring LoRa sync word 0x%xrn", sync_word) ;
// Modulation
RadioModulation_t mod = MODULATION_LORA ;
RADIO_SetAttr(MODULATION, &mod) ;
printf("Configuring Modulation: LORArn") ;
// PA Boost
uint8_t pa_boost = 0 ;
RADIO_SetAttr(PABOOST, &pa_boost) ;
printf("Configuring PA Boost: %drn", pa_boost) ;
// Tx Output Power
int16_t outputPwr = 1 ;
RADIO_SetAttr(OUTPUT_POWER, (void *)&outputPwr) ;
printf("Configuring Radio Output Power %drn", outputPwr) ;
// Spreading Factor
int16_t sf = SF_7 ;
RADIO_SetAttr(SPREADING_FACTOR, (void *)&sf) ;
printf("Configuring Radio SF %drn", sf) ;
// Watchdog Timeout
uint32_t wdt = 60000 ;
RADIO_SetAttr(WATCHDOG_TIMEOUT, (void *)&wdt) ;
printf("Configuring Radio Watch Dog Timeout %ldrn", wdt) ;
appTaskState = JOIN_SEND_STATE ;
appPostTask(DISPLAY_TASK_HANDLER) ;
}
else if (serialBuffer == '7')
{
// Radio Transmit
// the counter value
counter++ ;
if (counter > 255) counter = 0 ;
tx_buffer[0] = counter ;
printf("Buffer transmitted: ") ;
print_array(tx_buffer, 1) ;
RadioError_t radioStatus ;
RadioTransmitParam_t radioTransmitParam ;
radioTransmitParam.bufferLen = 1 ;
radioTransmitParam.bufferPtr = (uint8_t *)&tx_buffer ;
radioStatus = RADIO_Transmit(&radioTransmitParam) ;
switch (radioStatus)
{
case ERR_NONE:
{
printf("Radio Transmit Successrn") ;
}
break ;
case ERR_DATA_SIZE:
{
// do nothing, status already set to invalid
}
break ;
default:
{
printf("Radio Busyrn") ;
}
}
appTaskState = JOIN_SEND_STATE ;
appPostTask(DISPLAY_TASK_HANDLER) ;
}
else if (serialBuffer == '8')
{
// Enter Radio Receive mode
RadioReceiveParam_t radioReceiveParam ;
uint32_t rxTimeout = 0 ; // forever
radioReceiveParam.action = RECEIVE_START ;
radioReceiveParam.rxWindowSize = rxTimeout ;
if (RADIO_Receive(&radioReceiveParam) == 0)
{
printf("Radio in Receive modern") ;
}
appTaskState = JOIN_SEND_STATE ;
appPostTask(DISPLAY_TASK_HANDLER) ;
}
else if (serialBuffer == '9')
{
// Stop Radio Receive mode
RadioReceiveParam_t radioReceiveParam ;
radioReceiveParam.action = RECEIVE_STOP ;
if (RADIO_Receive(&radioReceiveParam) == 0)
{
printf("Radio Exit Receive modern") ;
}
appTaskState = JOIN_SEND_STATE ;
appPostTask(DISPLAY_TASK_HANDLER) ;
}
else
{
set_LED_data(LED_AMBER,&on);
printf("Invalid choice enteredrn");
appTaskState = JOIN_SEND_STATE;
appPostTask(DISPLAY_TASK_HANDLER);
}
}
/* OTAA Join Parameters */
#define DEMO_DEVICE_EUI {0xde, 0xaf, 0xfa, 0xce, 0xde, 0xaf, 0xfa, 0xce}
#define DEMO_APPLICATION_EUI {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05}
#define DEMO_APPLICATION_KEY {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05}
conc_board.h文件:
/* TODO: If Board is having EDBG with DEV_EUI flashed in
Userpage Enable this Macro otherwise make it as 0 */
#define EDBG_EUI_READ 1







