
"¡Wireless hecho fácil!" -Agregar la conexión de igual a igual a una aplicación Lorawan existente

Sujeto a su cumplimiento de estos términos, puede usar el software Microchip y cualquier derivado exclusivamente con productos de microchip. Es su responsabilidad cumplir con los términos de licencia de terceros aplicables a su uso de software de terceros (incluido el software de código abierto) que pueden acompañar el software Microchip.
Este software es suministrado por Microchip "tal cual". No se aplican garantías, ya sea expresas, implícitas o legales, a este software, incluidas las garantías implícitas de no infracción, comerciabilidad y idoneidad para un propósito particular.
En ningún caso, Microchip será responsable de ninguna pérdida indirecta, especial, punitiva, incidental o consecuente, daños, costos o gastos de cualquier tipo relacionado con el software, sin embargo, causado, incluso si se ha informado a Microchip de la posibilidad o los daños son previsibles. En la mayor medida permitida por la ley, la responsabilidad total de Microchip en todas las reclamaciones de ninguna manera relacionada con este software no excederá la cantidad de tarifas, si las hay, que ha pagado directamente a Microchip por este software.
Interactúe con sus compañeros sobre este software en el foro de Lora.
Basado en la aplicación de lorawan mote generada a partir de ASFV3, este código de muestra demuestra la coexistencia de una aplicación Lorawan y una comunicación de radio pura entre los tableros Pro 2X ATSAMR34 XPlained Pro utilizando la modulación Lora.
Para obtener más información sobre los dispositivos SIP de Microchip ATSAMR34 Lora, visite la página web de Microchip:
https://www.microchip.com/design-centers/wireless-connectivity/low-power-wide-area-networks/lora-technology/sam-r34-r35

El kit de evaluación ATSAMR34 XPlained Pro es una plataforma de hardware utilizada para evaluar el SIP de sub-GHz Lora® de baja potencia ATSAMR34. Es compatible con Microchip Studio 7.0 IDE y una colección de códigos de muestra está disponible en Advanced Software Framework (ASFV3) desde la versión 3.44.0. El kit de evaluación de la serie XPlained Pro MCU incluye un depurador integrado a bordo (EDBG), y no se necesitan herramientas externas para programar o depurar el ATSAMR34. El kit ofrece un conjunto de características que permiten al usuario comenzar con los periféricos SIP de sub-GHZ de baja potencia ATSAMR34 de baja potencia de inmediato y comprender cómo integrar el dispositivo en su propio diseño. El kit ATSAMR34 XPlained Pro contiene los siguientes elementos:

Para demostrar la comunicación entre pares, necesitas al menos 2X tableros Pro ATSAMR34 XPlained Pro.
Este proyecto integra la API de software Microchip Lorawan Stack (MLS) que proporciona una interfaz a los diferentes módulos de software.
Para esta aplicación, "pausaremos" la capa de Lorawan Mac (Mac) y usaremos la capa de radio Lorawan (TAL) para la comunicación entre pares y "reanude" la capa de Lorawan Mac para realizar las operaciones de Lorawan.
En la configuración de igual a igual, la capa MAC de Lorawan se omite y deja que la capacidad de conducir la radio directamente sin protocolo, sin seguridad, sin identificador único para un dispositivo y obviamente sin interoperabilidad y ecosistema (en opuesto con Lorawan). Esto puede servir para demostrar la capacidad de usar la comunicación P2P en una aplicación Lorawan.
Asegúrese de no violar las regulaciones locales para las bandas de frecuencia correspondientes. Por ejemplo, 25MW y 1% de ciclo de trabajo para la banda de 868MHz dentro de Europa.

La capa MAC proporciona la funcionalidad de las operaciones definidas en la especificación de Lorawan.
La capa TAL utiliza los controladores de radio y proporciona acceso al transceptor SX1276.
Para poder configurar los dispositivos para una conexión punto a punto, el código debe:
void LORAWAN_Init(AppDataCb_t appdata, JoinResponseCb_t joindata);
StackRetStatus_t LORAWAN_Reset (IsmBand_t ismBand);
uint32_t LORAWAN_Pause (void);
RadioError_t RADIO_SetAttr(RadioAttribute_t attribute, void *value);
RADIO_SetAttr(WATCHDOG_TIMEOUT,(void *)&wdt) ;
RadioError_t RADIO_Receive(RadioReceiveParam_t *param);
Esta función establece el dispositivo en modo de recepción para recibir datos y almacenarlo en el espacio del puntero del búfer haciendo una publicación de tarea en Radio_RXHandler.
RadioError_t RADIO_Transmit(RadioTransmitParam_t *param);
Esta función transmite los datos haciendo una publicación de tarea a Radio_TXHandler.
Para la comunicación entre pares, el código de muestra configura la radio con los siguientes parámetros:
typedef enum _AppTaskIds_t
{
DISPLAY_TASK_HANDLER,
PROCESS_TASK_HANDLER,
APP_TASKS_COUNT
}AppTaskIds_t;
typedef enum _AppTaskState_t
{
RESTORE_BAND_STATE,
DEMO_CERT_APP_STATE,
DEMO_APP_STATE,
JOIN_SEND_STATE
}AppTaskState_t;
static SYSTEM_TaskStatus_t (*appTaskHandlers[APP_TASKS_COUNT])(void) = {
/* In the order of descending priority */
displayTask,
processTask
};
appTaskState = JOIN_SEND_STATE;
appPostTask(DISPLAY_TASK_HANDLER);
/*********************************************************************//**
brief Calls appropriate functions based on state variables
*************************************************************************/
static SYSTEM_TaskStatus_t displayTask(void)
{
switch(appTaskState)
{
case RESTORE_BAND_STATE:
displayRunRestoreBand();
break;
case DEMO_CERT_APP_STATE:
displayRunDemoCertApp();
break;
case DEMO_APP_STATE:
displayRunDemoApp();
break;
case JOIN_SEND_STATE:
displayJoinAndSend();
break;
default:
printf("Error STATE Enteredrn");
break;
}
return SYSTEM_TASK_SUCCESS;
}
/*********************************************************************//**
brief Displays and activates LED's for joining to a network
and sending data to a network
*************************************************************************/
static void displayJoinAndSend(void)
{
printf("rn1. Send Join Requestrn");
printf("2. Send Datarn");
// new menu with p2p
printf("3. Main Menurn") ;
printf("4. MAC Pausern") ;
printf("5. MAC Resumern") ;
printf("6. Configure Radiorn") ;
printf("7. Send Radio Datarn") ;
printf("8. Enter Radio Receive modern") ;
printf("9. Exit Radio Receive modern") ;
#ifdef CONF_PMM_ENABLE
printf("0. Sleeprn") ;
#endif
printf("rnEnter your choice: ");
set_LED_data(LED_AMBER,&off);
set_LED_data(LED_GREEN,&off);
startReceiving = true;
}
/*********************************************************************//**
brief Pulls the data from UART when activated
*************************************************************************/
void serial_data_handler(void)
{
int rxChar;
char serialData;
/* verify if there was any character received*/
if (startReceiving == true)
{
if((-1) != (rxChar = sio2host_getchar_nowait()))
{
serialData = (char)rxChar;
if((serialData != 'r') && (serialData != 'n') && (serialData != 'b'))
{
startReceiving = false;
serialBuffer = rxChar;
appPostTask(PROCESS_TASK_HANDLER);
printf("rn");
}
}
}
}
/*********************************************************************//**
brief Calls appropriate functions based on state variables
*************************************************************************/
static SYSTEM_TaskStatus_t processTask(void)
{
switch(appTaskState)
{
case RESTORE_BAND_STATE:
processRunRestoreBand();
break;
case DEMO_CERT_APP_STATE:
processRunDemoCertApp();
break;
case DEMO_APP_STATE:
processRunDemoApp();
break;
case JOIN_SEND_STATE:
processJoinAndSend();
break;
default:
printf("Error STATE Enteredrn");
break;
}
return SYSTEM_TASK_SUCCESS;
}
/*********************************************************************//**
brief Sends Join request or Data to the network
*************************************************************************/
static void processJoinAndSend(void)
{
StackRetStatus_t status = LORAWAN_SUCCESS;
if(serialBuffer == '1')
{
status = LORAWAN_Join(DEMO_APP_ACTIVATION_TYPE);
if (LORAWAN_SUCCESS == (StackRetStatus_t)status)
{
set_LED_data(LED_GREEN,&on);
printf("nJoin Request Sentnr");
}
else
{
set_LED_data(LED_AMBER,&on);
print_stack_status(status);
appTaskState = JOIN_SEND_STATE;
appPostTask(DISPLAY_TASK_HANDLER);
}
}
else if(serialBuffer == '2' && joined == true)
{
sendData();
}
else if(serialBuffer == '2' && !joined)
{
set_LED_data(LED_AMBER,&on);
printf("Device not joined to the networkrn");
appTaskState = JOIN_SEND_STATE;
appPostTask(DISPLAY_TASK_HANDLER);
}
#ifdef CONF_PMM_ENABLE
else if(serialBuffer == '0')
{
static bool deviceResetsForWakeup = false;
PMM_SleepReq_t sleepReq;
/* Put the application to sleep */
sleepReq.sleepTimeMs = DEMO_CONF_DEFAULT_APP_SLEEP_TIME_MS;
sleepReq.pmmWakeupCallback = appWakeup;
sleepReq.sleep_mode = CONF_PMM_SLEEPMODE_WHEN_IDLE;
if (CONF_PMM_SLEEPMODE_WHEN_IDLE == SLEEP_MODE_STANDBY)
{
deviceResetsForWakeup = false;
}
if (true == LORAWAN_ReadyToSleep(deviceResetsForWakeup))
{
app_resources_uninit();
if (PMM_SLEEP_REQ_DENIED == PMM_Sleep(&sleepReq))
{
HAL_Radio_resources_init();
sio2host_init();
appTaskState = JOIN_SEND_STATE;
appPostTask(DISPLAY_TASK_HANDLER);
printf("rnsleep_not_okrn");
}
}
else
{
printf("rnsleep_not_okrn");
appTaskState = JOIN_SEND_STATE;
appPostTask(DISPLAY_TASK_HANDLER);
}
}
#endif
else if (serialBuffer == '3')
{
// main menu
appTaskState = DEMO_APP_STATE;
appPostTask(DISPLAY_TASK_HANDLER);
}
else if (serialBuffer == '4')
{
// Pause the Microchip LoRaWAN Stack
uint32_t time_ms ;
time_ms = LORAWAN_Pause() ;
printf("rnMAC Pause %ldrn", time_ms) ;
appTaskState = JOIN_SEND_STATE ;
appPostTask(DISPLAY_TASK_HANDLER) ;
}
else if (serialBuffer == '5')
{
// Resume the Microchip LoRaWAN Stack
LORAWAN_Resume() ;
printf("rnMAC Resumern") ;
appTaskState = JOIN_SEND_STATE ;
appPostTask(DISPLAY_TASK_HANDLER) ;
}
else if (serialBuffer == '6')
{
// Configure Radio Parameters
// --------------------------
// Bandwidth = BW_125KHZ
// Channel frequency = FREQ_868100KHZ
// Channel frequency deviation = 25000
// CRC = enabled
// Error Coding Rate = 4/5
// IQ Inverted = disabled
// LoRa Sync Word = 0x34
// Modulation = LoRa
// PA Boost = disabled (disabled for EU , enabled for NA)
// Output Power = 1 (up to +14dBm for EU / up to +20dBm for NA)
// Spreading Factor = SF7
// Watchdog timeout = 60000
// Bandwidth
RadioLoRaBandWidth_t bw = BW_125KHZ ;
RADIO_SetAttr(BANDWIDTH, &bw) ;
printf("Configuring Radio Bandwidth: 125kHzrn") ;
// Channel Frequency
uint32_t freq = FREQ_868100KHZ ;
RADIO_SetAttr(CHANNEL_FREQUENCY, &freq) ;
printf("Configuring Channel Frequency %ldrn", freq) ;
// Channel Frequency Deviation
uint32_t fdev = 25000 ;
RADIO_SetAttr(CHANNEL_FREQUENCY_DEVIATION, &fdev) ;
printf("Configuring Channel Frequency Deviation %ldrn", fdev) ;
// CRC
uint8_t crc_state = 1 ;
RADIO_SetAttr(CRC, &crc_state) ;
printf("Configuring CRC state: %drn", crc_state) ;
// Error Coding Rate
RadioErrorCodingRate_t cr = CR_4_5 ;
RADIO_SetAttr(ERROR_CODING_RATE, &cr) ;
printf("Configuring Error Coding Rate 4/5rn") ;
// IQ Inverted
uint8_t iqi = 0 ;
RADIO_SetAttr(IQINVERTED, &iqi) ;
printf("Configuring IQ Inverted: %drn", iqi) ;
// LoRa Sync Word
uint8_t sync_word = 0x34 ;
RADIO_SetAttr(LORA_SYNC_WORD, &sync_word) ;
printf("Configuring LoRa sync word 0x%xrn", sync_word) ;
// Modulation
RadioModulation_t mod = MODULATION_LORA ;
RADIO_SetAttr(MODULATION, &mod) ;
printf("Configuring Modulation: LORArn") ;
// PA Boost
uint8_t pa_boost = 0 ;
RADIO_SetAttr(PABOOST, &pa_boost) ;
printf("Configuring PA Boost: %drn", pa_boost) ;
// Tx Output Power
int16_t outputPwr = 1 ;
RADIO_SetAttr(OUTPUT_POWER, (void *)&outputPwr) ;
printf("Configuring Radio Output Power %drn", outputPwr) ;
// Spreading Factor
int16_t sf = SF_7 ;
RADIO_SetAttr(SPREADING_FACTOR, (void *)&sf) ;
printf("Configuring Radio SF %drn", sf) ;
// Watchdog Timeout
uint32_t wdt = 60000 ;
RADIO_SetAttr(WATCHDOG_TIMEOUT, (void *)&wdt) ;
printf("Configuring Radio Watch Dog Timeout %ldrn", wdt) ;
appTaskState = JOIN_SEND_STATE ;
appPostTask(DISPLAY_TASK_HANDLER) ;
}
else if (serialBuffer == '7')
{
// Radio Transmit
// the counter value
counter++ ;
if (counter > 255) counter = 0 ;
tx_buffer[0] = counter ;
printf("Buffer transmitted: ") ;
print_array(tx_buffer, 1) ;
RadioError_t radioStatus ;
RadioTransmitParam_t radioTransmitParam ;
radioTransmitParam.bufferLen = 1 ;
radioTransmitParam.bufferPtr = (uint8_t *)&tx_buffer ;
radioStatus = RADIO_Transmit(&radioTransmitParam) ;
switch (radioStatus)
{
case ERR_NONE:
{
printf("Radio Transmit Successrn") ;
}
break ;
case ERR_DATA_SIZE:
{
// do nothing, status already set to invalid
}
break ;
default:
{
printf("Radio Busyrn") ;
}
}
appTaskState = JOIN_SEND_STATE ;
appPostTask(DISPLAY_TASK_HANDLER) ;
}
else if (serialBuffer == '8')
{
// Enter Radio Receive mode
RadioReceiveParam_t radioReceiveParam ;
uint32_t rxTimeout = 0 ; // forever
radioReceiveParam.action = RECEIVE_START ;
radioReceiveParam.rxWindowSize = rxTimeout ;
if (RADIO_Receive(&radioReceiveParam) == 0)
{
printf("Radio in Receive modern") ;
}
appTaskState = JOIN_SEND_STATE ;
appPostTask(DISPLAY_TASK_HANDLER) ;
}
else if (serialBuffer == '9')
{
// Stop Radio Receive mode
RadioReceiveParam_t radioReceiveParam ;
radioReceiveParam.action = RECEIVE_STOP ;
if (RADIO_Receive(&radioReceiveParam) == 0)
{
printf("Radio Exit Receive modern") ;
}
appTaskState = JOIN_SEND_STATE ;
appPostTask(DISPLAY_TASK_HANDLER) ;
}
else
{
set_LED_data(LED_AMBER,&on);
printf("Invalid choice enteredrn");
appTaskState = JOIN_SEND_STATE;
appPostTask(DISPLAY_TASK_HANDLER);
}
}
/* OTAA Join Parameters */
#define DEMO_DEVICE_EUI {0xde, 0xaf, 0xfa, 0xce, 0xde, 0xaf, 0xfa, 0xce}
#define DEMO_APPLICATION_EUI {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05}
#define DEMO_APPLICATION_KEY {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05}
Archivo conf_board.h:
/* TODO: If Board is having EDBG with DEV_EUI flashed in
Userpage Enable this Macro otherwise make it as 0 */
#define EDBG_EUI_READ 1







