yoga pose detection correction
1.0.0
优选图像应为JPG/JPEG,图像名称应为[number].jpg 。
./poses_dataset/Images中创建一个新目录(名称可以是任何东西,但我建议使用姿势的名称),并用姿势图像填充它。./poses_dataset/angles中创建另一个目录(文件夹名称应与步骤1中使用的名称相同),并放置一个姿势的图像。该目录中的图像将用作“已知的好”姿势角度(姿势应该是完美的),如在实时检测过程中,将用户的姿势与此姿势进行比较以提出建议。create_poses_csv.ipynb 。 This will create a file named https://github.com/bourbonbourbon/yoga-pose-detection-correction/blob/main/create_poses_csv.ipynb?short_path=1#L120 (you can name it whatever) which has all the x, y, z, and visibility values of all the desired landmark points of all poses in the ./poses_dataset/Images目录。生成的CSV文件中的姿势列值将是整数。create_angles_csv.ipynb 。这将创建另一个名为https://github.com/bourbonbourbon/yoga-pose-detection-detection-correction/blob/main/main/create_angles_csv.ipynb?short_path=1#l104的CSV。rfc_model.ipynb ,该rfc_model.ipynb使用步骤3中生成的CSV作为输入文件来训练/测试数据。然后,它将创建一个.model文件,名为https://github.com/bourbonbourbon/yoga-pose-detection-c-c- c-correction/blob/main/main/rfc_model.ipynb?short_short_short_short_path=1#l44live_detection.py https://github.com/bourbonbourbon/yoga-pose-detection-correction/blob/main/live_detection.py#L106 https://github.com/bourbonbourbon/yoga-pose-detection-correction/blob/main/live_detection.py#L108 to whatever you have created in steps 4和5。注意:请参阅https://github.com/bourbonbourbon/yoga-pose-detection-correction/tree/1c9a4e50c00be9a8b677632901e6b8b0c459b6f4用于项目结构。
pip install -r requirements.txt安装来自requirements.txt的所有库.txt。python live_detection.py 。