nPerlinNoise
Stable Version 0.1.4-alpha
细节:
状态:
v0.1.4-alpha专注于参与的所有问题,遵循PEP440
所有软件包:版本
ChangElog在Python 3.10,Windows 10上测试
八度噪声的优化
编写单元测试
编写API文档
撰写未决文档
书写读取
博客
完成左代码文档
维八度
屏幕截图:










Python>=3.10.0有关生产依赖性请参见要求
有关开发依赖性,请参见Dev-Requirentess
$ pip install nPerlinNoise有关安装的详细说明,请参阅安装。
设置
import NPerlinNoise as nPN参考#24 >>> import nPerlinNoise as nPN
>>> noise = nPN.Noise( seed = 69420 )基本用法
通过调用noise(...) ,在给定的n维坐标处获取噪声值
坐标可以是单个价值,也可以是一个值得一提的
噪声(...,L,M,N,...)
其中l,m,n,...,是单个值
>>> noise( 73 )
array(0.5207113, dtype=float32)
>>> noise( 73 , 11 , 7 )
array(0.5700986, dtype=float32)
>>> noise( 0 , 73 , 7 , 11 , 0 , 3 )
array(0.5222712, dtype=float32)噪声(....,[L1,L2,...,LX],[M1,M2,...,MX],[N1,N2,...,NX],....)
其中....,是均匀维度和lx,mx,nx,...,是单个值的输出的输出形状相同
>>> noise([ 73 , 49 ])
array([0.52071124, 0.6402224 ], dtype=float32)
>>> noise([ 73 , 49 ], [ 2 , 2 ])
array([0.4563121 , 0.63378346], dtype=float32)
>>> noise([[ 73 ], [ 49 ], [ 0 ]],
... [[ 2 ], [ 2 ], [ 2 ]],
... [[ 0 ], [ 1 ], [ 2 ]])
array([[0.4563121 ],
[0.6571784 ],
[0.16369209]], dtype=float32)
>>> noise([[ 1 , 2 ], [ 2 , 3 ]],
... [[ 1 , 1 ], [ 1 , 1 ]],
... [[ 2 , 2 ], [ 2 , 2 ]])
array([[0.08666219, 0.09778494],
[0.09778494, 0.14886124]], dtype=float32) noise(..., l, m, n, ...)具有相同的值,而后尺寸为零为坐标
噪声(...,l,m,n)=噪声(...,l,m,n,0)=噪声(...,l,m,n,0,0)=噪声(...,l,m,m,n,0,0,0,...)
>>> noise( 73 )
array(0.5207113, dtype=float32)
>>> noise( 73 , 0 )
array(0.5207113, dtype=float32)
>>> noise( 73 , 0 , 0 )
array(0.5207113, dtype=float32)
>>> noise( 73 , 0 , 0 , 0 , 0 )
array(0.5207113, dtype=float32)网格模式允许计算各种坐标组合的噪声
使用noise(..., gridMode=True) GridMode是唯一的参数,默认值= false
输出的形状等于该顺序的坐标长度
>>> noise([ 73 , 49 ], [ 2 , 2 ], [ 0 , 1 ], gridMode = True )
array([[[0.4563121 , 0.63378346],
[0.4563121 , 0.63378346]],
[[0.44594935, 0.6571784 ],
[0.44594935, 0.6571784 ]]], dtype=float32)
>>> noise([ 1 , 20 , 32 , 64 ], [ 1 , 1 , 2 ], 0 , [ 1 , 2 ], gridMode = True )
array([[[[0.06459193, 0.5110498 , 0.669962 , 0.47636804],
[0.06459193, 0.5110498 , 0.669962 , 0.47636804],
[0.09864856, 0.5013973 , 0.62935597, 0.47954425]]],
[[[0.07678645, 0.50853723, 0.6778991 , 0.4679888 ],
[0.07678645, 0.50853723, 0.6778991 , 0.4679888 ],
[0.14069612, 0.47582665, 0.6663638 , 0.48764956]]]],
dtype=float32)有关详细用法,请参见示例
要查看所有测试,请参阅测试
No Known BugsNPerlin.findBounds is bottlenecknoise(a, b, c, d, e, f, ...) is slow for single value coordinates如果您有疑问,疑虑,错误报告等。请在此存储库的问题跟踪器中提交问题,或在此存储库的讨论部分中打开讨论。
Looking for Contributors for feature additionsLooking for Contributors for optimization #11Looking for Contributors for unit testing #12Looking for Contributors for ReadTheDocs #13Looking for Contributors for WebAppLooking for Contributors for API docs #15有关如何贡献贡献和行为准则的一般说明
维护者:
| Amith M |
贡献者:
| Shravan Revanna |