https://github.com/bab2min/kiwipiepy
Python3 API文档:https://bab2min.github.io/kiwipiepy
从猕猴桃0.5开始,我们为Python3提供API。您可以构建此项目并在Python中导入模块,或使用PIP安装已经建立的Kiwipiepy模块。
$ pip install --upgrade pip
$ pip install kiwipiepy或者
$ pip3 install --upgrade pip
$ pip3 install kiwipiepy当前,Kiwipiepy软件包支持Windows OS和Linux,MacOS 10.12或更高版本具有Vista版本。
在未提供二进制分布(例如MACOS M1 )的环境中,安装时CMake3.12或更高版本需要进行源代码编译。
$ pip install cmake
$ pip install --upgrade pip
$ pip install kiwipiepy 从奇异果的0.6.3版本中,我们支持交互式接口,以在安装后立即进行测试。通过PIP完成安装后,您可以按以下方式运行它以测试形态分析仪。
$ python -m kiwipiepy或者
$ python3 -m kiwipiepy当交互式接口启动时,您可以输入所需的句子以检查形态分析的结果。
>> 안녕 ?
[ Token ( form = '안녕' , tag = 'IC' , start = 0 , len = 2 ), Token ( form = '?' , tag = 'SF' , start = 2 , len = 3 )]要退出接口,按CTRL + C。
奇异果中使用的-Art标签的部分基于Sejong Malmachi的各个部分,并且有些标签得到了改进和使用。有关详细的标签系统,请参见此处。
> >> from kiwipiepy import Kiwi
> >> kiwi = Kiwi ()
# tokenize 함수로 형태소 분석 결과를 얻을 수 있습니다.
> >> kiwi . tokenize ( "안녕하세요 형태소 분석기 키위입니다." )
[ Token ( form = '안녕' , tag = 'NNG' , start = 0 , len = 2 ),
Token ( form = '하' , tag = 'XSA' , start = 2 , len = 1 ),
Token ( form = '시' , tag = 'EP' , start = 4 , len = 1 ),
Token ( form = '어요' , tag = 'EC' , start = 3 , len = 2 ),
Token ( form = '형태소' , tag = 'NNG' , start = 6 , len = 3 ),
Token ( form = '분석' , tag = 'NNG' , start = 10 , len = 2 ),
Token ( form = '기' , tag = 'NNG' , start = 12 , len = 1 ),
Token ( form = '키위' , tag = 'NNG' , start = 14 , len = 2 ),
Token ( form = '이' , tag = 'VCP' , start = 16 , len = 1 ),
Token ( form = 'ᆸ니다' , tag = 'EF' , start = 17 , len = 2 ),
Token ( form = '.' , tag = 'SF' , start = 19 , len = 1 )]
# normalize_coda 옵션을 사용하면
# 덧붙은 받침 때문에 분석이 깨지는 경우를 방지할 수 있습니다.
> >> kiwi . tokenize ( "ㅋㅋㅋ 이런 것도 분석이 될까욬ㅋㅋ?" , normalize_coda = True )
[ Token ( form = 'ㅋㅋㅋ' , tag = 'SW' , start = 0 , len = 3 ),
Token ( form = '이런' , tag = 'MM' , start = 4 , len = 2 ),
Token ( form = '것' , tag = 'NNB' , start = 7 , len = 1 ),
Token ( form = '도' , tag = 'JX' , start = 8 , len = 1 ),
Token ( form = '분석' , tag = 'NNG' , start = 10 , len = 2 ),
Token ( form = '이' , tag = 'JKS' , start = 12 , len = 1 ),
Token ( form = '되' , tag = 'VV' , start = 14 , len = 1 ),
Token ( form = 'ᆯ까요' , tag = 'EC' , start = 15 , len = 2 ),
Token ( form = 'ㅋㅋㅋ' , tag = 'SW' , start = 17 , len = 2 ),
Token ( form = '?' , tag = 'SF' , start = 19 , len = 1 )]
# 불용어 관리를 위한 Stopwords 클래스도 제공합니다.
> >> from kiwipiepy . utils import Stopwords
> >> stopwords = Stopwords ()
> >> kiwi . tokenize ( "분석 결과에서 불용어만 제외하고 출력할 수도 있다." , stopwords = stopwords )
[ Token ( form = '분석' , tag = 'NNG' , start = 0 , len = 2 ),
Token ( form = '결과' , tag = 'NNG' , start = 3 , len = 2 ),
Token ( form = '불' , tag = 'XPN' , start = 8 , len = 1 ),
Token ( form = '용어' , tag = 'NNG' , start = 9 , len = 2 ),
Token ( form = '제외' , tag = 'NNG' , start = 13 , len = 2 ),
Token ( form = '출력' , tag = 'NNG' , start = 18 , len = 2 )]
# add, remove 메소드를 이용해 불용어 목록에 단어를 추가하거나 삭제할 수도 있습니다.
> >> stopwords . add (( '결과' , 'NNG' ))
> >> kiwi . tokenize ( "분석 결과에서 불용어만 제외하고 출력할 수도 있다." , stopwords = stopwords )
[ Token ( form = '분석' , tag = 'NNG' , start = 0 , len = 2 ),
Token ( form = '불' , tag = 'XPN' , start = 8 , len = 1 ),
Token ( form = '용어' , tag = 'NNG' , start = 9 , len = 2 ),
Token ( form = '제외' , tag = 'NNG' , start = 13 , len = 2 ),
Token ( form = '출력' , tag = 'NNG' , start = 18 , len = 2 )]
> >> tokens = kiwi . tokenize ( "각 토큰은 여러 정보를 담고 있습니다." )
> >> tokens [ 0 ]
Token ( form = '각' , tag = 'MM' , start = 0 , len = 1 )
> >> tokens [ 0 ]. form # 형태소의 형태 정보
'각'
> >> tokens [ 0 ]. tag # 형태소의 품사 정보
'MM'
> >> tokens [ 0 ]. start # 시작 및 끝 지점 (문자 단위)
0
> >> tokens [ 0 ]. end
1
> >> tokens [ 0 ]. word_position # 현 문장에서의 어절 번호
0
> >> tokens [ 0 ]. sent_position # 형태소가 속한 문장 번호
0
> >> tokens [ 0 ]. line_number # 형태소가 속한 줄의 번호
0
# 문장 분리 기능도 지원합니다.
> >> kiwi . split_into_sents ( "여러 문장으로 구성된 텍스트네 이걸 분리해줘" )
[ Sentence ( text = '여러 문장으로 구성된 텍스트네' , start = 0 , end = 16 , tokens = None ),
Sentence ( text = '이걸 분리해줘' , start = 17 , end = 24 , tokens = None )]
# 문장 분리와 형태소 분석을 함께 수행할 수도 있습니다.
> >> kiwi . split_into_sents ( "여러 문장으로 구성된 텍스트네 이걸 분리해줘" , return_tokens = True )
[ Sentence ( text = '여러 문장으로 구성된 텍스트네' , start = 0 , end = 16 , tokens = [
Token ( form = '여러' , tag = 'MM' , start = 0 , len = 2 ),
Token ( form = '문장' , tag = 'NNG' , start = 3 , len = 2 ),
Token ( form = '으로' , tag = 'JKB' , start = 5 , len = 2 ),
Token ( form = '구성' , tag = 'NNG' , start = 8 , len = 2 ),
Token ( form = '되' , tag = 'XSV' , start = 10 , len = 1 ),
Token ( form = 'ᆫ' , tag = 'ETM' , start = 11 , len = 0 ),
Token ( form = '텍스트' , tag = 'NNG' , start = 12 , len = 3 ),
Token ( form = '이' , tag = 'VCP' , start = 15 , len = 1 ),
Token ( form = '네' , tag = 'EF' , start = 15 , len = 1 )]),
Sentence ( text = '이걸 분리해줘' , start = 17 , end = 24 , tokens = [
Token ( form = '이거' , tag = 'NP' , start = 17 , len = 2 ),
Token ( form = 'ᆯ' , tag = 'JKO' , start = 19 , len = 0 ),
Token ( form = '분리' , tag = 'NNG' , start = 20 , len = 2 ),
Token ( form = '하' , tag = 'XSV' , start = 22 , len = 1 ),
Token ( form = '어' , tag = 'EC' , start = 22 , len = 1 ),
Token ( form = '주' , tag = 'VX' , start = 23 , len = 1 ),
Token ( form = '어' , tag = 'EF' , start = 23 , len = 1 )])]
# 사전에 새로운 단어를 추가할 수 있습니다.
> >> kiwi . add_user_word ( "김갑갑" , "NNP" )
True
> >> kiwi . tokenize ( "김갑갑이 누구야" )
[ Token ( form = '김갑갑' , tag = 'NNP' , start = 0 , len = 3 ),
Token ( form = '이' , tag = 'JKS' , start = 3 , len = 1 ),
Token ( form = '누구' , tag = 'NP' , start = 5 , len = 2 ),
Token ( form = '야' , tag = 'JKV' , start = 7 , len = 1 )]
# v0.11.0 신기능
# 0.11.0 버전부터는 사용자 사전에 동사/형용사를 추가할 때, 그 활용형도 함께 등재됩니다.
# 사전에 등재되어 있지 않은 동사 `팅기다`를 분석하면, 엉뚱한 결과가 나옵니다.
> >> kiwi . tokenize ( '팅겼다' )
[ Token ( form = '팅기' , tag = 'NNG' , start = 0 , len = 2 ),
Token ( form = '하' , tag = 'XSA' , start = 2 , len = 0 ),
Token ( form = '다' , tag = 'EF' , start = 2 , len = 1 )]
# 형태소 `팅기/VV`를 사전에 등록하면, 이 형태소의 모든 활용형이 자동으로 추가되기에
# `팅겼다`, `팅길` 등의 형태를 모두 분석해낼 수 있습니다.
> >> kiwi . add_user_word ( '팅기' , 'VV' )
True
> >> kiwi . tokenize ( '팅겼다' )
[ Token ( form = '팅기' , tag = 'VV' , start = 0 , len = 2 ),
Token ( form = '었' , tag = 'EP' , start = 1 , len = 1 ),
Token ( form = '다' , tag = 'EF' , start = 2 , len = 1 )]
# 또한 변형된 형태소를 일괄적으로 추가하여 대상 텍스트에 맞춰 분석 성능을 높일 수 있습니다.
> >> kiwi . tokenize ( "안녕하세영, 제 이름은 이세영이에영. 학생이세영?" )
[ Token ( form = '안녕' , tag = 'NNG' , start = 0 , len = 2 ),
Token ( form = '하' , tag = 'XSA' , start = 2 , len = 1 ),
Token ( form = '시' , tag = 'EP' , start = 3 , len = 1 ),
Token ( form = '어' , tag = 'EC' , start = 3 , len = 1 ),
Token ( form = '영' , tag = 'MAG' , start = 4 , len = 1 ), # 오분석
Token ( form = ',' , tag = 'SP' , start = 5 , len = 1 ),
Token ( form = '저' , tag = 'NP' , start = 7 , len = 1 ),
Token ( form = '의' , tag = 'JKG' , start = 7 , len = 1 ),
Token ( form = '이름' , tag = 'NNG' , start = 9 , len = 2 ),
Token ( form = '은' , tag = 'JX' , start = 11 , len = 1 ),
Token ( form = '이세영' , tag = 'NNP' , start = 13 , len = 3 ),
Token ( form = '이' , tag = 'JKS' , start = 16 , len = 1 ),
Token ( form = '에' , tag = 'IC' , start = 17 , len = 1 ),
Token ( form = '영' , tag = 'NR' , start = 18 , len = 1 ),
Token ( form = '.' , tag = 'SF' , start = 19 , len = 1 ),
Token ( form = '님' , tag = 'NNG' , start = 21 , len = 1 ),
Token ( form = '도' , tag = 'JX' , start = 22 , len = 1 ),
Token ( form = '학생' , tag = 'NNG' , start = 24 , len = 2 ),
Token ( form = '이세영' , tag = 'NNP' , start = 26 , len = 3 ), # 오분석
Token ( form = '?' , tag = 'SF' , start = 29 , len = 1 )]
# 종결어미(EF) 중 '요'로 끝나는 것들을 '영'으로 대체하여 일괄 삽입합니다.
# 이 때 변형된 종결어미에는 -3의 페널티를 부여하여 원 형태소보다 우선하지 않도록 합니다.
# 새로 삽입된 형태소들이 반환됩니다.
> >> kiwi . add_re_rule ( 'EF' , '요$' , '영' , - 3 )
[ '어영' , '에영' , '지영' , '잖아영' , '거든영' , 'ᆯ까영' , '네영' , '구영' , '나영' , '군영' , ..., '으니깐영' ]
# 동일한 문장을 재분석하면 분석 결과가 개선된 것을 확인할 수 있습니다.
> >> kiwi . tokenize ( "안녕하세영, 제 이름은 이세영이에영. 님도 학생이세영?" )
[ Token ( form = '안녕' , tag = 'NNG' , start = 0 , len = 2 ),
Token ( form = '하' , tag = 'XSA' , start = 2 , len = 1 ),
Token ( form = '시' , tag = 'EP' , start = 3 , len = 1 ),
Token ( form = '어영' , tag = 'EF' , start = 3 , len = 2 ), # 분석 결과 개선
Token ( form = ',' , tag = 'SP' , start = 5 , len = 1 ),
Token ( form = '저' , tag = 'NP' , start = 7 , len = 1 ),
Token ( form = '의' , tag = 'JKG' , start = 7 , len = 1 ),
Token ( form = '이름' , tag = 'NNG' , start = 9 , len = 2 ),
Token ( form = '은' , tag = 'JX' , start = 11 , len = 1 ),
Token ( form = '이세영' , tag = 'NNP' , start = 13 , len = 3 ),
Token ( form = '이' , tag = 'VCP' , start = 16 , len = 1 ),
Token ( form = '에영' , tag = 'EF' , start = 17 , len = 2 ),
Token ( form = '.' , tag = 'SF' , start = 19 , len = 1 ),
Token ( form = '님' , tag = 'NNG' , start = 21 , len = 1 ),
Token ( form = '도' , tag = 'JX' , start = 22 , len = 1 ),
Token ( form = '학생' , tag = 'NNG' , start = 24 , len = 2 ),
Token ( form = '이' , tag = 'VCP' , start = 26 , len = 1 ),
Token ( form = '시' , tag = 'EP' , start = 27 , len = 1 ),
Token ( form = '어영' , tag = 'EF' , start = 27 , len = 2 ), # 분석 결과 개선
Token ( form = '?' , tag = 'SF' , start = 29 , len = 1 )]
# 기분석 형태를 등록하여 원하는 대로 분석되지 않는 문자열을 교정할 수도 있습니다.
# 다음 문장의 `사겼대`는 오타가 들어간 형태라 제대로 분석되지 않습니다.
> >> kiwi . tokenize ( '걔네 둘이 사겼대' )
[ Token ( form = '걔' , tag = 'NP' , start = 0 , len = 1 ),
Token ( form = '네' , tag = 'XSN' , start = 1 , len = 1 ),
Token ( form = '둘' , tag = 'NR' , start = 3 , len = 1 ),
Token ( form = '이' , tag = 'JKS' , start = 4 , len = 1 ),
Token ( form = '사' , tag = 'NR' , start = 6 , len = 1 ),
Token ( form = '기' , tag = 'VV' , start = 7 , len = 1 ),
Token ( form = '었' , tag = 'EP' , start = 7 , len = 1 ),
Token ( form = '대' , tag = 'EF' , start = 8 , len = 1 )]
# 다음과 같이 add_pre_analyzed_word 메소드를 이용하여 이를 교정할 수 있습니다.
> >> kiwi . add_pre_analyzed_word ( '사겼대' , [ '사귀/VV' , '었/EP' , '대/EF' ], - 3 )
True
# 그 뒤 동일한 문장을 다시 분석해보면 결과가 바뀐 것을 확인할 수 있습니다.
> >> kiwi . tokenize ( '걔네 둘이 사겼대' )
[ Token ( form = '걔' , tag = 'NP' , start = 0 , len = 1 ),
Token ( form = '네' , tag = 'XSN' , start = 1 , len = 1 ),
Token ( form = '둘' , tag = 'NR' , start = 3 , len = 1 ),
Token ( form = '이' , tag = 'JKS' , start = 4 , len = 1 ),
Token ( form = '사귀' , tag = 'VV' , start = 6 , len = 3 ),
Token ( form = '었' , tag = 'EP' , start = 6 , len = 3 ),
Token ( form = '대' , tag = 'EF' , start = 6 , len = 3 )]
# 단, 사귀/VV, 었/EP, 대/EF의 시작위치가 모두 6, 길이가 모두 3으로 잘못 잡히는 문제가 보입니다.
# 이를 고치기 위해서는 add_pre_analyzed_word 시 각 형태소의 위치정보도 함께 입력해주어야합니다.
> >> kiwi = Kiwi ()
> >> kiwi . add_pre_analyzed_word ( '사겼대' , [( '사귀' , 'VV' , 0 , 2 ), ( '었' , 'EP' , 1 , 2 ), ( '대' , 'EF' , 2 , 3 )], - 3 )
True
> >> kiwi . tokenize ( '걔네 둘이 사겼대' )
[ Token ( form = '걔' , tag = 'NP' , start = 0 , len = 1 ),
Token ( form = '네' , tag = 'XSN' , start = 1 , len = 1 ),
Token ( form = '둘' , tag = 'NR' , start = 3 , len = 1 ),
Token ( form = '이' , tag = 'JKS' , start = 4 , len = 1 ),
Token ( form = '사귀' , tag = 'VV' , start = 6 , len = 2 ,
Token ( form = '었' , tag = 'EP' , start = 7 len = 1 ,
Token ( form = '대' , tag = 'EF' , start = 8 len = 1 ]
# v0.12.0 신기능
# 0.12.0 버전부터는 형태소를 결합하여 문장으로 복원하는 기능이 추가되었습니다.
>> > kiwi . join ([( '길' , 'NNG' ), ( '을' , 'JKO' ), ( '묻' , 'VV' ), ( '어요' , 'EF' )])
'길을 물어요'
>> > kiwi . join ([( '흙' , 'NNG' ), ( '이' , 'JKS' ), ( '묻' , 'VV' ), ( '어요' , 'EF' )])
'흙이 묻어요'
# v0.13.0 신기능
# 더 강력한 언어 모델인 SkipBigram(sbg)이 추가되었습니다.
# 기존의 knlm과 달리 먼 거리에 있는 형태소를 고려할 수 있습니다.
>> > kiwi = Kiwi ( model_type = ' knlm ')
>> > kiwi . tokenize ( '이 번호로 전화를 이따가 꼭 반드시 걸어.' )
[ Token ( form = '이' , tag = 'MM' , start = 0 , len = 1 ),
Token ( form = '번호' , tag = 'NNG' , start = 2 , len = 2 ),
Token ( form = '로' , tag = 'JKB' , start = 4 , len = 1 ),
Token ( form = '전화' , tag = 'NNG' , start = 6 , len = 2 ),
Token ( form = '를' , tag = 'JKO' , start = 8 , len = 1 ),
Token ( form = '이따가' , tag = 'MAG' , start = 10 , len = 3 ),
Token ( form = '꼭' , tag = 'MAG' , start = 14 , len = 1 ),
Token ( form = '반드시' , tag = 'MAG' , start = 16 , len = 3 ),
Token ( form = '걷' , tag = 'VV-I' , start = 20 , len = 1 ), # 걷다/걸다 중 틀리게 '걷다'를 선택했음.
Token ( form = '어' , tag = 'EF' , start = 21 , len = 1 ),
Token ( form = '.' , tag = 'SF' , start = 22 , len = 1 )]
>> > kiwi = Kiwi ( model_type = ' sbg ')
>> > kiwi . tokenize ( '이 번호로 전화를 이따가 꼭 반드시 걸어.' )
[ Token ( form = '이' , tag = 'MM' , start = 0 , len = 1 ),
Token ( form = '번호' , tag = 'NNG' , start = 2 , len = 2 ),
Token ( form = '로' , tag = 'JKB' , start = 4 , len = 1 ),
Token ( form = '전화' , tag = 'NNG' , start = 6 , len = 2 ),
Token ( form = '를' , tag = 'JKO' , start = 8 , len = 1 ),
Token ( form = '이따가' , tag = 'MAG' , start = 10 , len = 3 ),
Token ( form = '꼭' , tag = 'MAG' , start = 14 , len = 1 ),
Token ( form = '반드시' , tag = 'MAG' , start = 16 , len = 3 ),
Token ( form = '걸' , tag = 'VV' , start = 20 , len = 1 ), # 걷다/걸다 중 바르게 '걸다'를 선택했음.
Token ( form = '어' , tag = 'EC' , start = 21 , len = 1 ),
Token ( form = '.' , tag = 'SF' , start = 22 , len = 1 )]
# 또한 오타 교정 기능이 추가되었습니다.
# 간단한 오타를 교정하여, 사소한 오타 때문에 전체 분석 결과가 어긋나는 문제를 해결할 수 있습니다.
>> > kiwi = Kiwi ( model_type = ' sbg ', typos = 'basic' )
>> > kiwi . tokenize ( '외않됀대?' ) # 오타 교정 사용 시 로딩 시간이 5~10초 정도 소요됨
[ Token ( form = '왜' , tag = 'MAG' , start = 0 , len = 1 ),
Token ( form = '안' , tag = 'MAG' , start = 1 , len = 1 ),
Token ( form = '되' , tag = 'VV' , start = 2 , len = 1 ),
Token ( form = 'ᆫ대' , tag = 'EF' , start = 2 , len = 2 ),
Token ( form = '?' , tag = 'SF' , start = 4 , len = 1 )]
>> > kiwi . tokenize ( '장례희망이 뭐냐는 선섕님의 질문에 벙어리가 됫따' )
[ Token ( form = '장래' , tag = 'NNG' , start = 0 , len = 2 ),
Token ( form = '희망' , tag = 'NNG' , start = 2 , len = 2 ),
Token ( form = '이' , tag = 'JKS' , start = 4 , len = 1 ),
Token ( form = '뭐' , tag = 'NP' , start = 6 , len = 1 ),
Token ( form = '이' , tag = 'VCP' , start = 7 , len = 0 ),
Token ( form = '냐는' , tag = 'ETM' , start = 7 , len = 2 ),
Token ( form = '선생' , tag = 'NNG' , start = 10 , len = 2 ),
Token ( form = '님' , tag = 'XSN' , start = 12 , len = 1 ),
Token ( form = '의' , tag = 'JKG' , start = 13 , len = 1 ),
Token ( form = '질문' , tag = 'NNG' , start = 15 , len = 2 ),
Token ( form = '에' , tag = 'JKB' , start = 17 , len = 1 ),
Token ( form = '벙어리' , tag = 'NNG' , start = 19 , len = 3 ),
Token ( form = '가' , tag = 'JKC' , start = 22 , len = 1 ),
Token ( form = '되' , tag = 'VV' , start = 24 , len = 1 ),
Token ( form = '엇' , tag = 'EP' , start = 24 , len = 1 ),
Token ( form = '다' , tag = 'EF' , start = 25 , len = 1 )]
# 0.17.1에서는 연철에 대한 오타 교정이 추가되었습니다.
# 받침 + 초성 ㅇ/ㅎ 꼴을 잘못 이어적은 경우에 대해 교정이 가능합니다.
>> > kiwi = Kiwi ( typos = 'continual' )
>> > kiwi . tokenize ( '오늘사무시레서' )
[ Token ( form = '오늘' , tag = 'NNG' , start = 0 , len = 2 ),
Token ( form = '사무실' , tag = 'NNG' , start = 2 , len = 4 ),
Token ( form = '에서' , tag = 'JKB' , start = 5 , len = 2 )]
>> > kiwi . tokenize ( '지가캤어요' )
[ Token ( form = '지각' , tag = 'NNG' , start = 0 , len = 3 ),
Token ( form = '하' , tag = 'XSV' , start = 2 , len = 1 ),
Token ( form = '었' , tag = 'EP' , start = 2 , len = 1 ),
Token ( form = '어요' , tag = 'EF' , start = 3 , len = 2 )]
# 기본 오타 교정에 연철 오타 교정까지 함께 사용할 수도 있습니다.
>> > kiwi = Kiwi ( typos = 'basic_with_continual' )
>> > kiwi . tokenize ( '웨 지가캤니?' )
[ Token ( form = '왜' , tag = 'MAG' , start = 0 , len = 1 ),
Token ( form = '지각' , tag = 'NNG' , start = 2 , len = 3 ),
Token ( form = '하' , tag = 'XSV' , start = 4 , len = 1 ),
Token ( form = '었' , tag = 'EP' , start = 4 , len = 1 ),
Token ( form = '니' , tag = 'EC' , start = 5 , len = 1 ),
Token ( form = '?' , tag = 'SF' , start = 6 , len = 1 )]
# 0.19.0 버전에서는 장음화 오류(한 음절을 여러 음절로 늘려 적는 오류)가
# 포함된 텍스트를 교정하는 기능도 추가되었습니다.
>> > kiwi = Kiwi ( typos = 'lengthening' )
>> > kiwi . tokenize ( '지이인짜 귀여워요' )
[ Token ( form = '진짜' , tag = 'MAG' , start = 0 , len = 4 ),
Token ( form = '귀엽' , tag = 'VA-I' , start = 5 , len = 3 ),
Token ( form = '어요' , tag = 'EF' , start = 7 , len = 2 )]
# 기본 오타 교정 + 연철 오타 교정 + 장음화 오류 교정을 함께 사용할 수도 있습니다.
>> > kiwi = Kiwi ( typos = 'basic_with_continual_and_lengthening' )
>> > kiwi . tokenize ( '지이인짜 기여워요~ 마니 좋아해' )
[ Token ( form = '진짜' , tag = 'MAG' , start = 0 , len = 4 ),
Token ( form = '귀엽' , tag = 'VA-I' , start = 5 , len = 3 ),
Token ( form = '어요' , tag = 'EF' , start = 7 , len = 2 ),
Token ( form = '~' , tag = 'SO' , start = 9 , len = 1 ),
Token ( form = '많이' , tag = 'MAG' , start = 11 , len = 2 ),
Token ( form = '좋아하' , tag = 'VV' , start = 14 , len = 3 ),
Token ( form = '어' , tag = 'EF' , start = 16 , len = 1 )]
# 0.17.0 버전부터는 사용자 사전에 공백이 있는 단어를 추가할 수 있습니다.
>> > kiwi = Kiwi ()
# '대학생 선교회'라는 단어를 등록합니다.
>> > kiwi . add_user_word ( '대학생 선교회' , 'NNP' )
True
# 등록한 것과 동일한 형태에서는
# 당연히 잘 분석됩니다.
>> > kiwi . tokenize ( '대학생 선교회에서' )
[ Token ( form = '대학생 선교회' , tag = 'NNP' , start = 0 , len = 7 ),
Token ( form = '에서' , tag = 'JKB' , start = 7 , len = 2 )]
# 추가로 공백이 없는 형태에도 일치가 가능합니다.
>> > kiwi . tokenize ( '대학생선교회에서' )
kiwi . tokenize ( '대학생선교회에서' )
[ Token ( form = '대학생 선교회' , tag = 'NNP' , start = 0 , len = 6 ),
Token ( form = '에서' , tag = 'JKB' , start = 6 , len = 2 )]
# 탭 문자나 줄바꿈 문자 등이 들어가도 일치가 가능합니다.
# 연속한 공백 문자는 공백 1번과 동일하게 처리합니다.
>> > kiwi . tokenize ( '대학생 t n 선교회에서' )
[ Token ( form = '대학생 선교회' , tag = 'NNP' , start = 0 , len = 11 ),
Token ( form = '에서' , tag = 'JKB' , start = 11 , len = 2 )]
# 그러나 사전 등재 시 공백이 없던 지점에
# 공백이 있는 경우에는 일치가 불가능합니다.
>> > kiwi . tokenize ( '대학 생선 교회에서' )
[ Token ( form = '대학' , tag = 'NNG' , start = 0 , len = 2 ),
Token ( form = '생선' , tag = 'NNG' , start = 3 , len = 2 ),
Token ( form = '교회' , tag = 'NNG' , start = 6 , len = 2 ),
Token ( form = '에서' , tag = 'JKB' , start = 8 , len = 2 )]
# space_tolerance를 2로 설정하여
# 공백이 두 개까지 틀린 경우를 허용하도록 하면
# '대학 생선 교회'에도 '대학생 선교회'가 일치하게 됩니다.
>> > kiwi . space_tolerance = 2
>> > kiwi . tokenize ( '대학 생선 교회에서' )
[ Token ( form = '대학생 선교회' , tag = 'NNP' , start = 0 , len = 8 ),
Token ( form = '에서' , tag = 'JKB' , start = 8 , len = 2 )]
# 0.18.0 버전에서는 외국어 문자, 이모지에 대한 지원이 강화되었습니다.
# 화면에 표시되는 글자 단위로 토큰이 분할됩니다.
>> > kiwi . tokenize ( '?☝?☝?' )
[ Token ( form = '?' , tag = 'W_EMOJI' , start = 0 , len = 1 ),
Token ( form = '☝?' , tag = 'W_EMOJI' , start = 1 , len = 2 ),
Token ( form = '☝?' , tag = 'W_EMOJI' , start = 3 , len = 2 )]
# 참고: v0.17의 결과
# [Token(form='?☝?☝?', tag='SW', start=0, len=5)]
# script 필드가 추가되어 해당 문자가
# 유니코드 상에서 어떤 영역에 속하는지 확인할 수 있습니다.
# SW, SH, SL, W_EMOJI 태그에 대해서만 script값이 부여됩니다.
>> > tokens = kiwi . tokenize ( 'ひらがなカタカナ' )
>> > tokens
[ Token ( form = 'ひらがなカタカナ' , tag = 'SW' , start = 0 , len = 8 )]
>> > tokens [ 0 ]. script
'Kana'
>> > tokens = kiwi . tokenize ( 'résumé' )
>> > tokens
[ Token ( form = 'résumé' , tag = 'SL' , start = 0 , len = 6 )]
# 참고 v0.17까지의 결과
# [Token(form='r', tag='SL', start=0, len=1),
# Token(form='é', tag='SW', start=1, len=1),
# Token(form='sum', tag='SL', start=2, len=3),
# Token(form='é', tag='SW', start=5, len=1)]
>> > tokens [ 0 ]. script
'Latin'
>> > tokens = kiwi . tokenize ( 'ἥρως' )
>> > tokens
[ Token ( form = 'ἥρως' , tag = 'SW' , start = 0 , len = 4 )]
>> > tokens [ 0 ]. script
'Greek and Coptic'
>> > tokens = kiwi . tokenize ( 'ฉันชอบกินข้าวผัด' )
>> > tokens
[ Token ( form = 'ฉันชอบกินข้าวผัด' , tag = 'SW' , start = 0 , len = 16 )]
>> > tokens [ 0 ]. script
'Thai'
# 0.18.1버전부터는 받침만으로 구성된 형태소 출력시
# 호환용 자모를 사용하는 옵션을 제공합니다.
>> > kiwi . tokenize ( '예쁜데' )
[ Token ( form = '예쁘' , tag = 'VA' , start = 0 , len = 2 ),
Token ( form = 'ᆫ데' , tag = 'EF' , start = 1 , len = 2 )]
>> > kiwi . tokenize ( '예쁜데' , compatible_jamo = True )
[ Token ( form = '예쁘' , tag = 'VA' , start = 0 , len = 2 ),
Token ( form = 'ㄴ데' , tag = 'EF' , start = 1 , len = 2 )]
# 받침 ᆫ이 호환용 자모인 ㄴ으로 변환되어 출력됨
# 0.20.0버전에서는 사이시옷 분석을 수행하는 옵션이 추가되었습니다.
# 사전에 등재되어 있지 않은, 사이시옷이 들어간 합성명사는
# 다음과 같이 잘못 분석되는 경우가 많습니다.
>> > kiwi . tokenize ( '시곗바늘' )
[ Token ( form = '시곗' , tag = 'NNG' , start = 0 , len = 2 ),
Token ( form = '바늘' , tag = 'NNG' , start = 2 , len = 2 )]
# saisiot=True 옵션을 주면 사이시옷을 형태소로 간주하여
# 다음과 같이 분리해줍니다.
>> > kiwi . tokenize ( '시곗바늘' , saisiot = True )
[ Token ( form = '시계' , tag = 'NNG' , start = 0 , len = 2 ),
Token ( form = 'ᆺ' , tag = 'Z_SIOT' , start = 1 , len = 1 ),
Token ( form = '바늘' , tag = 'NNG' , start = 2 , len = 2 )]
# saisiot=False 옵션을 주면 사이시옷이 들어간 합성 명사 전체를
# 하나의 형태소로 합쳐서 출력합니다.
>> > kiwi . tokenize ( '시곗바늘' , saisiot = False )
[ Token ( form = '시곗바늘' , tag = 'NNG' , start = 0 , len = 4 )]如果成功完成了Kiwipiepy软件包安装,则在创建软件包并生成猕猴桃对象时不会发生错误。
from kiwipiepy import Kiwi , Match
kiwi = Kiwi ()猕猴桃的构造函数如下:
Kiwi ( num_workers = 0 , model_path = None , load_default_dict = True , integrate_allomorph = True , model_type = 'knlm' , typos = None , typo_cost_threshold = 2.5 )num_workers :如果您是2个或更多,则可以使用Multicore来分析单词提取物和正式站,因此您可以以更快的速度进行分析。model_path :指定具有正式分析模型的路径。省略后,模型路径将从kiwipiepy_model软件包加载。load_default_dict :加载其他字典。额外的词典由Wikipedia的标题组成。在这种情况下,加载和分析时间略有增加,但是您可以更好地捕获各种专有名词。为了防止分析结果被捕获,请将其置于错误。integrate_allomorph :在母亲中,它会自动集成相同的形式,但语音环境(例如“ ah/eo”,''//'。model_type :指定用于形态分析的语言模型。您可以选择'knlm'或'sbg'之一。 'sbg'相对较慢,但可以捕获词素之间的关系。typos :分析形态时更正简单的错字。设置为None 。typo_cost_threshold :设置最大错字以允许错别字。猕猴桃对象可以执行三种类型的任务。
这是一项新功能,因为猕猴桃0.5。了解经常出现字符串的模式,并提取应该是单词的字符串。此功能的基本思想基于https://github.com/lovit/soynlp的单词提取技术,该技术结合了基于字符串的名词概率,并提取了预期是名词的单词。
猕猴桃提供了两种未注册的词汇提取方法:
Kiwi . extract_words ( texts , min_cnt , max_word_len , min_score )
Kiwi . extract_add_words ( texts , min_cnt , max_word_len , min_score , pos_score )extract_words(texts, min_cnt=10, max_word_len=10, min_score=0.25, pos_score=-3.0, lm_filter=True)texts :插入要在Iterable[str]中分析的文本。有关详细信息,请参阅下面的示例。min_cnt :确定要提取的单词出现多少次,出现在输入文本中。输入文本越大,增加值就越好。max_word_len :要提取的单词的最大长度。如果将此值设置得太多,那么扫描单词的时间将更长,因此最好对其进行正确调整。min_score :这是要提取的单词的最小单词分数。值越低,提取的可能性就越高,随着值的增加,提取的单词数量的减少越多,因此有必要将其设置为适当的值。默认值为0.25。pos_score :这是要提取单词的最小名词得分。值越低,提取不是名词的单词的可能性就越大。默认值为-3。lm_filter :使用零件,语音和语言模型确定过滤。 # 입력으로 str의 list를 줄 경우
inputs = list ( open ( 'test.txt' , encoding = 'utf-8' ))
kiwi . extract_words ( inputs , min_cnt = 10 , max_word_len = 10 , min_score = 0.25 )
'''
위의 코드에서는 모든 입력을 미리 list로 저장해두므로
test.txt 파일이 클 경우 많은 메모리를 소모할 수 있습니다.
그 대신 파일에서 필요한 부분만 가져와 사용하려면(streaming)
아래와 같이 사용해야 합니다.
'''
class IterableTextFile :
def __init__ ( self , path ):
self . path = path
def __iter__ ( self ):
yield from open ( path , encoding = 'utf-8' )
kiwi . extract_words ( IterableTextFile ( 'test.txt' ), min_cnt = 10 , max_word_len = 10 , min_score = 0.25 )extract_add_words(texts, min_cnt=10, max_word_len=10, min_score=0.25, pos_score=-3, lm_filter=True)仅将名词单词提取为extract_words 。但是,此方法会提前将提取的名词候选者作为NNP自动注册,以便将其用于形态学分析。如果您不使用此方法,则必须使用add_user_word方法提前注册提取的未注册单词。
为了正确分析未提前注册的现有单词,该单词必须在用户字典中注册。这可以通过extract_add_words自动完成,也可以直接添加。以下方法是用于管理用户字典的方法。
Kiwi . add_user_word ( word , tag , score , orig_word = None )
Kiwi . add_pre_analyzed_word ( form , analyzed , score )
Kiwi . add_rule ( tag , replacer , score )
Kiwi . add_re_rule ( tag , pattern , repl , score )
Kiwi . load_user_dictionary ( user_dict_path )add_user_word(word, tag='NNP', score=0.0, orig_word=None)在用户字典中注册新类型。
word :它是要注册的表格的形式。当前,只有字符可以注册为不包含间距(空白字符)的单词。tag :这是注册形式的一部分。默认值为NNP。score :这是要注册表格的形式的分数。如果在许多情况下可能会分析相同的形式,则此值越大,相应形式的优先级就越优先。orig_word :如果要添加的附加形式是某种形式的变体,则可以通过此因子传递原始词素。如果没有,则可以省略。如果给出了此值,则必须在当前词典中有一种orig_word / tag组合形式,否则它会对ValueError产生例外。如果存在原始的词素,则可以指定orig_word以产生更准确的分析结果。如果正式的插入成功,将返回True ,如果已经存在相同的形态并失败,则它会返回False 。
add_pre_analyzed_word(form, analyzed, score=0.0)在用户词典中注册情绪形式。这允许某些形式诱导用户以所需形式分析形态分析。
form :这是情绪的形式。analyzed : form的正式分析。该值必须是一个可触觉的,该值由(形式,零件)或元组形状的元组组成(形式,零件,起点,端点)。该值指定的词素必须存在于当前字典中,否则它们会产生ValueError的例外。score :要添加形状的形式的重量分数。如果形态学的几种组合符合形式,那么高的单词将更高。如果插入成功,则如果已经存在相同的形式并且失败, False返回True 。
此方法很容易在分析仪中添加不规则的分析结果。例如,动词的사귀다兄弟是사귀었다 ,但是它们사겼다是错误的。您可以使用此方法来确保您正在사겼다 사귀/VV + 었/EP + 다/EF 。
kiwi . add_pre_analyzed_word ( '사겼다' , [ '사귀/VV' , '었/EP' , '다/EF' ], - 3 )`
kiwi . add_pre_analyzed_word ( '사겼다' , [( '사귀' , 'VV' , 0 , 2 ), ( '었' , 'EP' , 1 , 2 ), ( '다' , 'EF' , 2 , 3 )], - 3 )在后一种情况下,通过准确指定每个分析结果的位置,相应词素的start , end和length在猕猴桃分析结果中是准确的。
add_rule(tag, replacer, score)添加规则修改的修改。
tag :要添加的演讲的部分replacer :改变形态的规则。必须以可呼叫的形式提供此值,并且必须通过接收原始形式污点str并返回修改表格的条带来返回。如果返回与输入相同的值,则忽略了变形结果。score :要添加的修饰词素的重量得分。如果形态学的几种组合符合形式,那么高的单词将更高。返回replacer新生成的表格list 。
add_re_rule(tag, pattern, repl, score)它扮演与add_rule方法相同的角色,但在变形规则中使用正则表达式。
tag :要添加的演讲的部分pattern :霉菌转换的规则。该值必须是一个正则表达式,可以通过re.compile来编译。repl : pattern发现的图案被此值所取代。 Python3这与正则表达模块中re.sub函数的repl因子相同。score :要添加的修饰词素的重量得分。如果形态学的几种组合符合形式,那么高的单词将更高。返回pattern和repl新生成的表格的list 。
这种方法很容易添加由规则转换的霸主。例如-요可以注册终结者( 먹어염 , 뛰었구염 , 배불러염等),取而代之的是-염 。
kiwi . add_re_rule ( 'EF' , r'요$' , r'염' , - 3.0 )当大量注册这两种形式时,我们建议将分数设置为-3或更少,以使得在分析结果中没有比原始形式更高的优先级。
load_user_dictionary(user_dict_path)从文件中读取用户字典。用户字典文件应使用UTF-8编码,应以如下的形式配置。每个字段应由Tab字符( t)隔开,并且可以省略单词分数。
#으로 시작하는 줄은 주석 처리됩니다.
# 각 필드는 Tab(t)문자로 구분됩니다.
#
# <단일 형태소를 추가하는 경우>
# (형태) t (품사태그) t (점수)
# * (점수)는 생략시 0으로 처리됩니다.
키위 NNP -5.0
#
# <이미 존재하는 형태소의 이형태를 추가하는 경우>
# (이형태) t (원형태소/품사태그) t (점수)
# * (점수)는 생략시 0으로 처리됩니다.
기위 키위/NNG -3.0
#
# <기분석 형태를 추가하는 경우>
# (형태) t (원형태소/품사태그 + 원형태소/품사태그 + ...) t (점수)
# * (점수)는 생략시 0으로 처리됩니다.
사겼다 사귀/VV + 었/EP + 다/EF -1.0
成功读取前文件,通过词典返回新添加的电台的数量。
有关实际示例,请参阅猕猴桃内置的默认前文件。
如果您创建奇异果并将单词添加到用户词典中,则可以使用以下方法执行正式分析,句子分离,间隔校正和句子修复等任务。
Kiwi . tokenize ( text , match_option , normalize_coda = False , z_coda = True , split_complex = False , compatible_jamo = False , saisiot = None , blocklist = None )
Kiwi . analyze ( text , top_n , match_option , normalize_coda = False , z_coda = True , split_complex = False , compatible_jamo = False , saisiot = None , blocklist = None )
Kiwi . split_into_sents ( text , match_options = Match . ALL , normalize_coda = False , z_coda = True , split_complex = False , compatible_jamo = False , saisiot = None , blocklist = None , return_tokens = False )
Kiwi . glue ( text_chunks , insert_new_lines = None , return_space_insertions = False )
Kiwi . space ( text , reset_whitespace = False )
Kiwi . join ( morphs , lm_search = True )
Kiwi . template ( format_str , cache = True )tokenize(text, match_option=Match.ALL, normalize_coda=False, z_coda=True, split_complex=False, compatible_jamo=False, saisiot=None, blocklist=None)输入的输入text将进行分析以简单地返回结果。分析结果以Token列表的形式返回,如下所示:
>> kiwi . tokenize ( '테스트입니다.' )
[ Token ( form = '테스트' , tag = 'NNG' , start = 0 , len = 3 ), Token ( form = '이' , tag = 'VCP' , start = 3 , len = 1 ), Token ( form = 'ᆸ니다' , tag = 'EF' , start = 4 , len = 2 )] normalize_coda解决了何时像ㅋㅋㅋ和ㅎㅎㅎㅎ进入支持的初始物体时未能分析的问题。
>> kiwi . tokenize ( "안 먹었엌ㅋㅋ" , normalize_coda = False )
[ Token ( form = '안' , tag = 'NNP' , start = 0 , len = 1 ),
Token ( form = '먹었엌' , tag = 'NNP' , start = 2 , len = 3 ),
Token ( form = 'ㅋㅋ' , tag = 'SW' , start = 5 , len = 2 )]
>> kiwi . tokenize ( "안 먹었엌ㅋㅋ" , normalize_coda = True )
[ Token ( form = '안' , tag = 'MAG' , start = 0 , len = 1 ),
Token ( form = '먹' , tag = 'VV' , start = 2 , len = 1 ),
Token ( form = '었' , tag = 'EP' , start = 3 , len = 1 ),
Token ( form = '어' , tag = 'EF' , start = 4 , len = 1 ),
Token ( form = 'ㅋㅋㅋ' , tag = 'SW' , start = 5 , len = 2 )]analyze(text, top_n=1, match_option=Match.ALL, normalize_coda=False, z_coda=True, split_complex=False, compatible_jamo=False, saisiot=None, blocklist=None)输入分析输入text以返回结果。打印总top_n的详细结果。返回值的配置如下。
[( 분석결과1 , 점수 ), ( 분석결과2 , 점수 ), ... ]分析结果以Token列表的形式返回,如下所示:
实际示例如下。
>> kiwi . analyze ( '테스트입니다.' , top_n = 5 )
[([ Token ( form = '테스트' , tag = 'NNG' , start = 0 , len = 3 ), Token ( form = '이' , tag = 'VCP' , start = 3 , len = 1 ), Token ( form = 'ᆸ니다' , tag = 'EF' , start = 4 , len = 2 )], - 25.217018127441406 ),
([ Token ( form = '테스트입니' , tag = 'NNG' , start = 0 , len = 5 ), Token ( form = '다' , tag = 'EC' , start = 5 , len = 1 )], - 40.741905212402344 ),
([ Token ( form = '테스트입니' , tag = 'NNG' , start = 0 , len = 5 ), Token ( form = '다' , tag = 'MAG' , start = 5 , len = 1 )], - 41.81024932861328 ),
([ Token ( form = '테스트입니' , tag = 'NNG' , start = 0 , len = 5 ), Token ( form = '다' , tag = 'EF' , start = 5 , len = 1 )], - 42.300254821777344 ),
([ Token ( form = '테스트' , tag = 'NNG' , start = 0 , len = 3 ), Token ( form = '입' , tag = 'NNG' , start = 3 , len = 1 ), Token ( form = '니다' , tag = 'EF' , start = 4 , len = 2 )], - 45.86524200439453 )
]如果文本是字符串的可触觉,则并联几个输入。此时的返回值是输入单个文本时返回值的可触觉。根据num_workers,在多个线程中同时处理工作,这是生成kiwi()时的参数。返回值与输入值的顺序相同。
>> result_iter = kiwi . analyze ([ '테스트입니다.' , '테스트가 아닙니다.' , '사실 맞습니다.' ])
>> next ( result_iter )
[([ Token ( form = '테스트' , tag = 'NNG' , start = 0 , len = 3 ), Token ( form = '이' , tag = 'VCP' , start = 3 , len = 1 ), Token ( form = 'ᆸ니다' , tag = 'EF' , start = 4 , len = 2 ), Token ( form = '.' , tag = 'SF' , start = 6 , len = 1 )], - 20.441545486450195 )]
>> next ( result_iter )
[([ Token ( form = '테스트' , tag = 'NNG' , start = 0 , len = 3 ), Token ( form = '가' , tag = 'JKC' , start = 3 , len = 1 ), Token ( form = '아니' , tag = 'VCN' , start = 5 , len = 2 ), Token ( form = 'ᆸ니다' , tag = 'EF' , start = 7 , len = 2 ), Token ( form = '.' , tag = 'SF' , start = 9 , len = 1 )], - 30.23870277404785 )]
>> next ( result_iter )
[([ Token ( form = '사실' , tag = 'MAG' , start = 0 , len = 2 ), Token ( form = '맞' , tag = 'VV' , start = 3 , len = 1 ), Token ( form = '습니다' , tag = 'EF' , start = 4 , len = 3 ), Token ( form = '.' , tag = 'SF' , start = 7 , len = 1 )], - 22.232769012451172 )]
>> next ( result_iter )
Traceback ( most recent call last ):
File "<stdin>" , line 1 , in < module >
StopIterationFO循环使您可以更简单,更方便地执行并行性。在分析大量文本数据时,这很有用。
>> for result in kiwi . analyze ( long_list_of_text ):
tokens , score = result [ 0 ]
print ( tokens )如果您将文本作为字符串上的文字作为文明,那么在分析的呼吁之后,可以阅读此峰值的时间。因此,如果此参数与其他IO资源(文件I / O)链接,则在所有分析结束之前,您不应终止资源。
>> file = open ( 'long_text.txt' , encoding = 'utf-8' )
>> result_iter = kiwi . analyze ( file )
>> file . close () # 파일이 종료됨
>> next ( result_iter ) # 종료된 파일에서 분석해야할 다음 텍스트를 읽어들이려고 시도함
ValueError : I / O operation on closed file .
The above exception was the direct cause of the following exception :
Traceback ( most recent call last ):
File "<stdin>" , line 1 , in < module >
SystemError : < built - in function next > returned a result with an error setsplit_into_sents( text, match_options=Match.ALL, normalize_coda=False, z_coda=True, split_complex=False, compatible_jamo=False, saisiot=None, return_tokens=False ) >> kiwi . split_into_sents ( "여러 문장으로 구성된 텍스트네 이걸 분리해줘" )
[ Sentence ( text = '여러 문장으로 구성된 텍스트네' , start = 0 , end = 16 , tokens = None ),
Sentence ( text = '이걸 분리해줘' , start = 17 , end = 24 , tokens = None )]
>> kiwi . split_into_sents ( "여러 문장으로 구성된 텍스트네 이걸 분리해줘" , return_tokens = True )
[ Sentence ( text = '여러 문장으로 구성된 텍스트네' , start = 0 , end = 16 , tokens = [
Token ( form = '여러' , tag = 'MM' , start = 0 , len = 2 ),
Token ( form = '문장' , tag = 'NNG' , start = 3 , len = 2 ),
Token ( form = '으로' , tag = 'JKB' , start = 5 , len = 2 ),
Token ( form = '구성' , tag = 'NNG' , start = 8 , len = 2 ),
Token ( form = '되' , tag = 'XSV' , start = 10 , len = 1 ),
Token ( form = 'ᆫ' , tag = 'ETM' , start = 11 , len = 0 ),
Token ( form = '텍스트' , tag = 'NNG' , start = 12 , len = 3 ),
Token ( form = '이' , tag = 'VCP' , start = 15 , len = 1 ),
Token ( form = '네' , tag = 'EF' , start = 15 , len = 1 )
]),
Sentence ( text = '이걸 분리해줘' , start = 17 , end = 24 , tokens = [
Token ( form = '이거' , tag = 'NP' , start = 17 , len = 2 ),
Token ( form = 'ᆯ' , tag = 'JKO' , start = 19 , len = 0 ),
Token ( form = '분리' , tag = 'NNG' , start = 20 , len = 2 ),
Token ( form = '하' , tag = 'XSV' , start = 22 , len = 1 ),
Token ( form = '어' , tag = 'EC' , start = 22 , len = 1 ),
Token ( form = '주' , tag = 'VX' , start = 23 , len = 1 ),
Token ( form = '어' , tag = 'EF' , start = 23 , len = 1 )
])]glue(text_chunks, return_space_insertions=False)text_chunks :组合文本的列表。return_space_insertions :true,将每一部分的轨道插入返回List[bool] 。 >> kiwi . glue ([
"그러나 알고보니 그 봉" ,
"지 안에 있던 것은 바로" ,
"레몬이었던 것이다." ])
"그러나 알고보니 그 봉지 안에 있던 것은 바로 레몬이었던 것이다."
>> kiwi . glue ([
"그러나 알고보니 그 봉" ,
"지 안에 있던 것은 바로" ,
"레몬이었던 것이다." ], return_space_insertions = True )
( "그러나 알고보니 그 봉지 안에 있던 것은 바로 레몬이었던 것이다." , [ False , True ])space(text, reset_whitespace=False)text :要分析的字符串。如果将此参数给出一个单个str,则将其在单个线程中处理,如果将其赋予str的峰值,则由多重处理。reset_whitespace true,则也可以积极执行。默认值是错误的,在这种情况下,它专注于使用所附单词的更正。该方法的间距校正函数基于形态分析。因此,如果缝隙插入形态的中间,则结果可能不准确。在这种情况下,您可以调整Kiwi.space_tolerance以忽略形态中的空间或设置reset_whitespace=True以忽略现有差距并使用它来改善结果。
>> kiwi . space ( "띄어쓰기없이작성된텍스트네이걸교정해줘" )
"띄어쓰기 없이 작성된 텍스트네 이걸 교정해 줘."
>> kiwi . space ( "띄 어 쓰 기 문 제 가 있 습 니 다" )
"띄어 쓰기 문 제 가 있 습 니 다"
>> kiwi . space_tolerance = 2 # 형태소 내 공백을 최대 2개까지 허용
>> kiwi . space ( "띄 어 쓰 기 문 제 가 있 습 니 다" )
"띄어 쓰기 문제가 있습니다"
>> kiwi . space ( "띄 어 쓰 기 문 제 가 있 습 니 다" , reset_whitespace = True ) # 기존 공백 전부 무시
"띄어쓰기 문제가 있습니다"join(morphs, lm_search=True)morphs :要组合的词素清单。每种形态都应是从Kiwi.tokenizer获得的Token类型,或者由(形式,部分,语音)组成的tuple类型。lm_search :如果有一种模棱两可的耻辱类型可以以两种或多种形式恢复,请通过语言模型搜索选择最佳形态,如果此值为真。如果您是错误的,则不会搜索搜索,但是可以更快地将其还原。该方法使用的规则与形态相结合时在space中使用的规则类似,并正确插入空间。由于表单本身的形式不包括间隙相关的信息,因此即使用tokenize分析特定文本然后再耦合以再次join ,也不会恢复原始文本。
>> kiwi . join ([( '덥' , 'VA' ), ( '어' , 'EC' )])
'더워'
>> tokens = kiwi . tokenize ( "분석된결과를 다시합칠수있다!" )
# 형태소 분석 결과를 복원.
# 복원 시 공백은 규칙에 의해 삽입되므로 원문 텍스트가 그대로 복원되지는 않음.
>> kiwi . join ( tokens )
'분석된 결과를 다시 합칠 수 있다!'
>> tokens [ 3 ]
Token ( form = '결과' , tag = 'NNG' , start = 4 , len = 2 )
>> tokens [ 3 ] = ( '내용' , 'NNG' ) # 4번째 형태소를 결과->내용으로 교체
>> kiwi . join ( tokens ) # 다시 join하면 결과를->내용을 로 교체된 걸 확인 가능
'분석된 내용을 다시 합칠 수 있다!'
# 불규칙 활용여부가 모호한 경우 lm_search=True인 경우 맥락을 고려해 최적의 후보를 선택합니다.
>> kiwi . join ([( '길' , 'NNG' ), ( '을' , 'JKO' ), ( '묻' , 'VV' ), ( '어요' , 'EF' )])
'길을 물어요'
>> kiwi . join ([( '흙' , 'NNG' ), ( '이' , 'JKS' ), ( '묻' , 'VV' ), ( '어요' , 'EF' )])
'흙이 묻어요'
# lm_search=False이면 탐색을 실시하지 않습니다.
>> kiwi . join ([( '길' , 'NNG' ), ( '을' , 'JKO' ), ( '묻' , 'VV' ), ( '어요' , 'EF' )], lm_search = False )
'길을 묻어요'
>> kiwi . join ([( '흙' , 'NNG' ), ( '이' , 'JKS' ), ( '묻' , 'VV' ), ( '어요' , 'EF' )], lm_search = False )
'흙이 묻어요'
# 동사/형용사 품사 태그 뒤에 -R(규칙 활용), -I(불규칙 활용)을 덧붙여 활용법을 직접 명시할 수 있습니다.
>> kiwi . join ([( '묻' , 'VV-R' ), ( '어요' , 'EF' )])
'묻어요'
>> kiwi . join ([( '묻' , 'VV-I' ), ( '어요' , 'EF' )])
'물어요'
# 0.15.2버전부터는 Tuple의 세번째 요소로 띄어쓰기 유무를 지정할 수 있습니다.
# True일 경우 강제로 띄어쓰기, False일 경우 강제로 붙여쓰기를 수행합니다.
>> kiwi . join ([( '길' , 'NNG' ), ( '을' , 'JKO' , True ), ( '묻' , 'VV' ), ( '어요' , 'EF' )])
'길 을 물어요'
>> kiwi . join ([( '길' , 'NNG' ), ( '을' , 'JKO' ), ( '묻' , 'VV' , False ), ( '어요' , 'EF' )])
'길을물어요'
# 과거형 선어말어미를 제거하는 예시
>> remove_past = lambda s : kiwi . join ( t for t in kiwi . tokenize ( s ) if t . tagged_form != '었/EP' )
>> remove_past ( '먹었다' )
'먹다'
>> remove_past ( '먼 길을 걸었다' )
'먼 길을 걷다'
>> remove_past ( '전화를 걸었다.' )
'전화를 걸다.'template(format_str, cache=True)format_str :模板字符串。使用与Python的str.format (https://docs.python.org/ko/ko/3/library/string.html#formtrings)相同的语法。cache :这是模板的缓存。此方法可帮助您使用Kiwi.join的形成组合如下。
# 빈칸은 {}로 표시합니다.
# 이 자리에 형태소 혹은 기타 Python 객체가 들어가서 문자열을 완성시키게 됩니다.
> >> tpl = kiwi . template ( "{}가 {}을 {}었다." )
# template 객체는 format 메소드를 제공합니다.
# 이 메소드를 통해 빈 칸을 채울 수 있습니다.
# 형태소는 `kiwipiepy.Token` 타입이거나
# (형태, 품사) 혹은 (형태, 품사, 왼쪽 띄어쓰기 유무)로 구성된 tuple 타입이어야 합니다.
> >> tpl . format (( "나" , "NP" ), ( "공부" , "NNG" ), ( "하" , "VV" ))
'내가 공부를 했다.'
> >> tpl . format (( "너" , "NP" ), ( "밥" , "NNG" ), ( "먹" , "VV" ))
'네가 밥을 먹었다.'
> >> tpl . format (( "우리" , "NP" ), ( "길" , "NNG" ), ( "묻" , "VV-I" ))
'우리가 길을 물었다.'
# 형태소가 아닌 Python 객체가 입력되는 경우 `str.format`과 동일하게 동작합니다.
> >> tpl . format ( 5 , "str" , { "dict" : "dict" })
"5가 str를 {'dict': 'dict'}었다."
# 입력한 객체가 형태소가 아닌 Python 객체로 처리되길 원하는 경우 !s 변환 플래그를 사용합니다.
> >> tpl = kiwi . template ( "{!s}가 {}을 {}었다." )
> >> tpl . format (( "나" , "NP" ), ( "공부" , "NNG" ), ( "하" , "VV" ))
"('나', 'NP')가 공부를 했다."
# Python 객체에 대해서는 `str.format`과 동일한 서식 지정자를 사용할 수 있습니다.
> >> tpl = kiwi . template ( "{:.5f}가 {!r}을 {}었다." )
> >> tpl . format ( 5 , "str" , { "dict" : "dict" })
"5.00000가 'str'를 {'dict': 'dict'}었다."
# 서식 지정자가 주어진 칸에 형태소를 대입할 경우 ValueError가 발생합니다.
> >> tpl . format (( "우리" , "NP" ), "str" , ( "묻" , "VV-I" ))
ValueError : cannot specify format specifier for Kiwi Token
# 치환 필드에 index나 name을 지정하여 대입 순서를 설정할 수 있습니다.
> >> tpl = kiwi . template ( "{0}가 {obj}를 {verb}ㄴ다. {1}는 {obj}를 안 {verb}었다." )
> >> tpl . format (
[( "우리" , "NP" ), ( "들" , "XSN" )],
[( "너희" , "NP" ), ( "들" , "XSN" )],
obj = ( "길" , "NNG" ),
verb = ( "묻" , "VV-I" )
)
'우리들이 길을 묻는다. 너희들은 길을 안 물었다.'
# 위의 예시처럼 종성 자음은 호환용 자모 코드 앞에 \로 이스케이프를 사용해야합니다.
# 그렇지 않으면 종성이 아닌 초성으로 인식됩니다.
> >> tpl = kiwi . template ( "{0}가 {obj}를 {verb}ㄴ다. {1}는 {obj}를 안 {verb}었다." )
> >> tpl . format (
[( "우리" , "NP" ), ( "들" , "XSN" )],
[( "너희" , "NP" ), ( "들" , "XSN" )],
obj = ( "길" , "NNG" ),
verb = ( "묻" , "VV-I" )
)
'우리들이 길을 묻 ᄂ이다. 너희들은 길을 안 물었다.' 根据Sejong Partsa标签,它用于添加和修改某些部分标签。
| 类别 | 标签 | 解释 |
|---|---|---|
| 步骤(n) | nng | 通用名词 |
| NNP | 名词 | |
| NNB | 依赖性 | |
| nr | 调查 | |
| NP | 代词 | |
| (v)节 | VV | 动词 |
| VA | 形容词 | |
| VX | 辅助的 | |
| VCP | 积极指导(IDA) | |
| VCN | 负说明(否) | |
| 管状 | 毫米 | 管状 |
| 副词(MA) | 杂志 | 一般副词 |
| 少校 | 联系 | |
| 欹 | 我知道了 | 欹 |
| 调查(J) | JKS | 主要调查 |
| JKC | 投降 | |
| JKG | 管状研究 | |
| JKO | 客观调查 | |
| JKB | 内部人权 | |
| JKV | 集线器调查 | |
| JKQ | 引用 | |
| JX | 助手 | |
| JC | 联系 | |
| 母亲(E) | EP | 清酒 |
| EF | 结尾 | |
| EC | 连接母亲 | |
| etn | 名词 | |
| etm | 管状 | |
| 前缀 | XPN | 回火前缀 |
| Tracky(XS) | XSN | 名词衍生后缀 |
| XSV | 动词衍生后缀 | |
| XSA | 形容词衍生物后缀 | |
| XSM | 副词衍生后缀* | |
| radix | xr | radix |
| 代码,外语,特殊字符 | SF | 终止代码(。!?) |
| sp | 分类代码(, /:;) | |
| SS | 引用代码和括号('()] <> {} - '''''≫等) | |
| SSO | SS *打开的代码 | |
| SSC | 接近SS *的代码* | |
| se | 还原表(…) | |
| 所以 | 附件(-〜) | |
| SW | 其他特殊字符 | |
| SL | 字母(AZ AZ) | |
| sh | 汉字 | |
| sn | 数字(0-9) | |
| SB | 订购的头( A。Me。 | |
| 无法分析 | 联合国 | 无法分析* |
| Web(W) | w_url | URL地址* |
| w_email | 电子邮件地址* | |
| w_hashtag | 标签(#ABCD) * | |
| w_mention | 提及(@ABCD) * | |
| w_serial | 序列号(电话号码,帐号,IP地址等) * * | |
| w_emoji | 表情符号* | |
| ETC | z_coda | 添加了支持* |
| z_siot | Sai Shi衣服* | |
| 用户0〜4 | 自定义标签* |
*这是一个带有Sejong Partsa标签的唯一标签。
从0.12.0版本中,可以将后缀-R和-I添加到VV , VA , VX和XSA标签中。 -R表示规则的使用, -I表示不规则使用。
从0.10.3版本中,我们通过实验支持句子分离功能。从0.11.0版本中,精度得到了显着提高。请参阅此页面以获取句子分离功能的性能。
一个词可以通过多种方式进行分析,因此,在看到上下文至关重要的情况下,猕猴桃具有很高的精度。请参阅此页面以减轻歧义性能。
请参阅猕猴桃#引用的引用。