一种用于查找语料库中区分术语并将其显示在交互式HTML散点图中的工具。与术语相对应的点有选择性标记,因此它们不与其他标签或点重叠。
引用为:Jason S. Kessler。 ScatterText:一种基于浏览器的工具,可视化语料库的不同。 ACL系统演示。 2017。
以下是使用ScatterText创建可视化术语在2012年美国政治惯例中使用的术语的示例。在散点图中显示了2,000个最相关的联合克。他们的X和y轴是共和党和民主党议员的普遍使用。
import scattertext as st
df = st.SampleCorpora.ConventionData2012.get_data().assign(
parse=lambda df: df.text.apply(st.whitespace_nlp_with_sentences)
)
corpus = st.CorpusFromParsedDocuments(
df, category_col='party', parsed_col='parse'
).build().get_unigram_corpus().compact(st.AssociationCompactor(2000))
html = st.produce_scattertext_explorer(
corpus,
category='democrat',
category_name='Democratic',
not_category_name='Republican',
minimum_term_frequency=0,
pmi_threshold_coefficient=0,
width_in_pixels=1000,
metadata=corpus.get_df()['speaker'],
transform=st.Scalers.dense_rank,
include_gradient=True,
left_gradient_term='More Republican',
middle_gradient_term='Metric: Dense Rank Difference',
right_gradient_term='More Democratic',
)
open('./demo_compact.html', 'w').write(html)
编写的HTML文件看起来像下面的图像。单击它以获取实际的交互式可视化。
杰森·凯斯勒(Jason S. Kessler)。 ScatterText:一种基于浏览器的工具,可视化语料库的不同。 ACL系统演示。 2017。链接到纸:arxiv.org/abs/1703.00565
@article{kessler2017scattertext,
author = {Kessler, Jason S.},
title = {Scattertext: a Browser-Based Tool for Visualizing how Corpora Differ},
booktitle = {Proceedings of ACL-2017 System Demonstrations},
year = {2017},
address = {Vancouver, Canada},
publisher = {Association for Computational Linguistics},
}
目录
安装
概述
自定义可视化和绘制分散体
教程
了解缩放的F-评分
替代术语评分方法
位置选择图过程
高级用途
例子
图表布局上的注释
什么是新的
来源
安装Python 3.11或更高并运行:
$ pip install scattertext
如果您不能(或不想)安装Spacy,请用nlp = scattertext.WhitespaceNLP.whitespace_nlp替换nlp = spacy.load('en')行。请注意,这与word_similarity_explorer不兼容,而令牌和句子边界检测功能将是低绩效的正则表达式。有关一个示例,请参见demo_without_spacy.py 。
建议您安装jieba , spacy , empath , astropy , flashtext , gensim和umap-learn ,以充分利用ScatterText。
SctateText应该主要与Python 2.7一起使用,但可能不使用。
HTML输出在Chrome和Safari中看起来最好。
该项目的名称是ScatterText。 “ ScatterText”被写成一个单词,应大写。当在Python中使用时,应将包装scattertext定义为名称st ,即import scattertext as st 。
这是一种工具,旨在可视化哪些单词和短语比其他类别更有特征。
考虑页面顶部的示例。
看着这个似乎不知所措。实际上,这是对2012年政治公约中单词使用的相对简单可视化。每个点对应于共和党或民主党在公约期间提到的单词或短语。点越接近情节的顶部,民主党人使用的次数越多。右边是一个点,共和党人使用的单词或短语越多。双方经常使用的单词,例如“ Of”和“ of”和“ The”和“ Mitt”,往往会出现在右上角。尽管已经隐藏了非常低的频率词来保留计算资源,但是一个派对都没有使用的单词,例如“长颈鹿”的左下角。
有趣的事情发生在左上角和右下角。在左上角,民主党人经常使用“自动”(如自动救助)和“百万富翁”之类的单词,但共和党人很少或从未使用过。同样,共和党人经常使用的术语和民主党人很少使用的术语占据了右下角。其中包括“大政府”和“奥运会”,指的是罗姆尼州长参与的盐湖城奥运会。
术语是由他们的关联所着的。那些与民主党更相关的人是蓝色的,而那些与共和党人红色相关的人。
两组文档最特征的术语都显示在可视化的极右翼。
这种可视化的灵感来自数据液体(Rudder,2014年)。
ScatterText旨在帮助您构建这些图形并有效地在它们上标记点。
文档(包括此读数)是一项正在进行的工作。请参阅下面的教程以及Pydata 2017教程。
围绕代码和测试戳戳应该让您对事情的工作方式有一个好主意。
该图书馆涵盖了一些新颖且有效的术语材料公式,包括缩放的F-评分。
ScatterText 0.1.0中的新事物,可以使用数据框来进行项/元数据位置和其他特定于术语的数据。我们还可以使用它来确定单击项之后显示的特定术语特定信息。
请注意,正如我们将在本示例中看到的那样,可以禁用在ScatterText中使用文档类别。
此示例涵盖了针对单词频率的绘制项分散,并识别出频率最多和最少分散的术语。使用Rosengren的分散度度量(Gries 2021),随着它们变得更加频繁,术语往往会增加其分散分数。我们将看到如何绘制这种效果并考虑频率的影响。
这是Gries(2021)中介绍的许多其他分散指标,在Dispersion类中可用并记录下来,我们将在本节稍后使用。
让我们首先创建一个会议语料库,但我们将使用FromparsedDocuments Factory CorpusWithoutCategoriesFromParsedDocuments Factory来确保语料库中不包含类别。如果我们尝试找到文档类别,我们将看到所有文档都具有“ _”类别。
import scattertext as st
df = st . SampleCorpora . ConventionData2012 . get_data (). assign (
parse = lambda df : df . text . apply ( st . whitespace_nlp_with_sentences ))
corpus = st . CorpusWithoutCategoriesFromParsedDocuments (
df , parsed_col = 'parse'
). build (). get_unigram_corpus (). remove_infrequent_words ( minimum_term_count = 6 )
corpus . get_categories ()
# Returns ['_']接下来,我们将为我们绘制的所有术语创建一个数据框。我们将首先创建一个数据框架,在该数据框架中我们捕获每个项的频率和各种分散指标。这些术语在图中激活后将显示。
dispersion = st . Dispersion ( corpus )
dispersion_df = dispersion . get_df ()
dispersion_df . head ( 3 )返回
Frequency Range SD VC Juilland's D Rosengren's S DP DP norm KL-divergence Dissemination
thank 363 134 3.108113 1.618274 0.707416 0.694898 0.391548 0.391560 0.748808 0.972954
you 1630 177 12.383708 1.435902 0.888596 0.898805 0.233627 0.233635 0.263337 0.963905
so 549 155 3.523380 1.212967 0.774299 0.822244 0.283151 0.283160 0.411750 0.986423```
These are discussed in detail in [Gries 2021](http://www.stgries.info/research/ToApp_STG_Dispersion_PHCL.pdf).
Dissementation is presented in Altmann et al. (2011).
We'll use Rosengren's S to find the dispersion of each term. It's which a metric designed for corpus parts
(convention speeches in our case) of varying length. Where n is the number of documents in the corpus, s_i is the
percentage of tokens in the corpus found in document i, v_i is term count in document i, and f is the total number
of tokens in the corpus of type term type.
Rosengren's
S: [^2}{f})](https://render.githubusercontent.com/render/math?math=frac{Sum_{i=1}^{n}sqrt{s_i%20cdot%20v_i})
^2}{f})
In order to start plotting, we'll need to add coordinates for each term to the data frame.
To use the `dataframe_scattertext` function, you need, at a minimum a dataframe with 'X' and 'Y' columns.
The `Xpos` and `Ypos` columns indicate the positions of the original `X` and `Y` values on the scatterplot, and
need to be between 0 and 1. Functions in `st.Scalers` perform this scaling. Absent `Xpos` or `Ypos`,
`st.Scalers.scale` would be used.
Here is a sample of values:
* `st.Scalers.scale(vec)` Rescales the vector to where the minimum value is 0 and the maximum is 1.
* `st.Scalers.log_scale(vec)` Rescales the lgo of the vector
* `st.Scalers.dense_ranke(vec)` Rescales the dense rank of the vector
* `st.Scalers.scale_center_zero_abs(vec)` Rescales a vector with both positive and negative values such that the 0 value
in the original vector is plotted at 0.5, negative values are projected from [-argmax(abs(vec)), 0] to [0, 0.5] and
positive values projected from [0, argmax(abs(vec))] to [0.5, 1].
```python
dispersion_df = dispersion_df.assign(
X=lambda df: df.Frequency,
Xpos=lambda df: st.Scalers.log_scale(df.X),
Y=lambda df: df["Rosengren's S"],
Ypos=lambda df: st.Scalers.scale(df.Y),
)
请注意,此处的Ypos列无需Y缩放。
最后,由于我们没有区分类别,因此我们可以设置ignore_categories=True 。
现在,我们可以使用dataframe_scattertext函数绘制此图:
html = st . dataframe_scattertext (
corpus ,
plot_df = dispersion_df ,
metadata = corpus . get_df ()[ 'speaker' ] + ' (' + corpus . get_df ()[ 'party' ]. str . upper () + ')' ,
ignore_categories = True ,
x_label = 'Log Frequency' ,
y_label = "Rosengren's S" ,
y_axis_labels = [ 'Less Dispersion' , 'Medium' , 'More Dispersion' ],
)哪个产生(单击交互式版本):
请注意,除了标准用法统计数据外,我们还可以在该术语名称下看到各种分散统计。要自定义显示的统计信息,请设置term_description_column=[...]参数,其中包含要显示的列名列表。
总体上,分散度指标通常是共有的,在此分散图中,分散和频率往往具有很高的相关性,但具有复杂的,非线性的曲线。根据度量,此相关曲线可以是功率,线性,乙状结肠或通常是其他的。
为了考虑这种相关性,我们可以使用非参数回归器预测频率的分散,并查看哪些术语相对于其预期分散体具有最高和最低的残差。
在这种情况下,我们将使用与10个邻居的KNN回归器从术语频率(分别dispersion_df.X和.Y )预测Rosengren,并计算残差。
我们将剩余到颜色点,对剩余的颜色具有中性颜色,约为0和其他颜色,用于正值和负值。我们将在数据框架中添加点颜色的列,并将其称为ColorsCore。它的值介于0到1之间,在d3 interpolateWarm颜色尺度上具有0.5作为净颜色。我们使用上面讨论的st.Scalers.scale_center_zero_abs来进行此转换。
from sklearn . neighbors import KNeighborsRegressor
dispersion_df = dispersion_df . assign (
Expected = lambda df : KNeighborsRegressor ( n_neighbors = 10 ). fit (
df . X . values . reshape ( - 1 , 1 ), df . Y
). predict ( df . X . values . reshape ( - 1 , 1 )),
Residual = lambda df : df . Y - df . Expected ,
ColorScore = lambda df : st . Scalers . scale_center_zero_abs ( df . Residual )
) 现在,我们准备绘制我们的彩色色散图。我们将colorscore列名分配给dataframe_scattertext中的color_score_column参数。
此外,我们希望在左侧填充两个术语列表,其中术语具有较高和低的剩余值,这表明术语相对于其频率指示的水平和最低的术语具有最大的分散性。我们可以通过left_list_column参数来执行此操作。我们可以使用header_names参数指定上下项列表名称。最后,我们可以通过添加吸引人的背景颜色来扩大情节。
html = st . dataframe_scattertext (
corpus ,
plot_df = dispersion_df ,
metadata = corpus . get_df ()[ 'speaker' ] + ' (' + corpus . get_df ()[ 'party' ]. str . upper () + ')' ,
ignore_categories = True ,
x_label = 'Log Frequency' ,
y_label = "Rosengren's S" ,
y_axis_labels = [ 'Less Dispersion' , 'Medium' , 'More Dispersion' ],
color_score_column = 'ColorScore' ,
header_names = { 'upper' : 'Lower than Expected' , 'lower' : 'More than Expected' },
left_list_column = 'Residual' ,
background_color = '#e5e5e3'
)哪个产生(单击交互式版本):
虽然您应该学习Python完全使用ScatterText,但我将一些基本功能放在命令行工具中。当您遵循上述过程时,安装了该工具。
运行$ scattertext --help以查看完整的用法信息。这是如何在CSV文件上使用香草散点版的快速示例。该文件需要至少有两个列,一个包含要分析的文本,另一个包含类别。在下面的示例CSV中,列分别是文本和派对。
下面的示例处理了CSV文件,以及所得的HTML可视化中的cli_demo.html。
请注意,参数--minimum_term_frequency=8省略少于8次的术语, --regex_parser表示应使用简单的正则表达式解析器代替Spacy。 FLAG --one_use_per_doc指出,应仅计算文档中一个术语的出现来计算术语频率。
如果您想解析非英语文本,则可以使用--spacy_language_model参数来配置该工具将使用的Spacy语言模型。默认值为“ en”,您可以在https://spacy.io/docs/api/language-models上查看其他可用。
$ curl -s https://cdn.rawgit.com/JasonKessler/scattertext/master/scattertext/data/political_data.csv | head -2
party,speaker,text
democrat,BARACK OBAMA, " Thank you. Thank you. Thank you. Thank you so much.Thank you.Thank you so much. Thank you. Thank you very much, everybody. Thank you.
$
$ scattertext --datafile=https://cdn.rawgit.com/JasonKessler/scattertext/master/scattertext/data/political_data.csv
> --text_column=text --category_column=party --metadata_column=speaker --positive_category=democrat
> --category_display_name=Democratic --not_category_display_name=Republican --minimum_term_frequency=8
> --one_use_per_doc --regex_parser --outputfile=cli_demo.html以下代码创建了一个独立的HTML文件,该文件分析了民主党和共和党在2012年党公约中使用的单词,并输出了一些值得注意的术语协会。
首先,导入散文和尖峰。
>>> import scattertext as st
>>> import spacy
>>> from pprint import pprint
接下来,将要分析的数据组装到熊猫的数据框架中。它应该至少有两个列,您想分析的文本以及您想研究的类别。在这里, text列包含惯例演讲,而party专栏包含演讲者的聚会。最终,我们将使用speaker列在可视化中标记片段。
>>> convention_df = st.SampleCorpora.ConventionData2012.get_data()
>>> convention_df.iloc[0]
party democrat
speaker BARACK OBAMA
text Thank you. Thank you. Thank you. Thank you so ...
Name: 0, dtype: object
将数据框架变成散点文本语料库以开始分析它。要查找各方的差异,请将category_col参数设置为'party' ,并使用text列中存在的演讲作为文本中的文本来分析text COL参数。最后,将Spacy模型传递到nlp参数中,并调用build()构建语料库。
# Turn it into a Scattertext Corpus
>>> nlp = spacy.load('en')
>>> corpus = st.CorpusFromPandas(convention_df,
... category_col='party',
... text_col='text',
... nlp=nlp).build()
让我们看看语料库中的特征术语,以及最相关的民主党人和共和党人的术语。请参阅幻灯片52至59个思想内核的转弯内容,以获取有关这些方法的更多详细信息。
以下是将语料库与一般英语语料库区分开的术语。
>>> print(list(corpus.get_scaled_f_scores_vs_background().index[:10]))
['obama',
'romney',
'barack',
'mitt',
'obamacare',
'biden',
'romneys',
'hardworking',
'bailouts',
'autoworkers']
以下是与民主党最相关的术语:
>>> term_freq_df = corpus.get_term_freq_df()
>>> term_freq_df['Democratic Score'] = corpus.get_scaled_f_scores('democrat')
>>> pprint(list(term_freq_df.sort_values(by='Democratic Score', ascending=False).index[:10]))
['auto',
'america forward',
'auto industry',
'insurance companies',
'pell',
'last week',
'pell grants',
"women 's",
'platform',
'millionaires']
和共和党人:
>>> term_freq_df['Republican Score'] = corpus.get_scaled_f_scores('republican')
>>> pprint(list(term_freq_df.sort_values(by='Republican Score', ascending=False).index[:10]))
['big government',
"n't build",
'mitt was',
'the constitution',
'he wanted',
'hands that',
'of mitt',
'16 trillion',
'turned around',
'in florida']
现在,让我们写一个独立的HTML文件的散点图。我们将成为Y轴类别的“民主党人”,并以资本为“ D”类别为“民主党”命名。我们将以资本“ R”的名字命名其他类别的“共和党人”。没有“民主党”类别的语料库中的所有文件都将被视为共和党人。我们将可视化的宽度设置为像素的可视化宽度,并使用metadata参数标记每个摘录的说话者。最后,我们将可视化写入HTML文件。
>>> html = st.produce_scattertext_explorer(corpus,
... category='democrat',
... category_name='Democratic',
... not_category_name='Republican',
... width_in_pixels=1000,
... metadata=convention_df['speaker'])
>>> open("Convention-Visualization.html", 'wb').write(html.encode('utf-8'))
以下是网页的样子。单击它,等待几分钟的交互式版本。
ScatterText也可用于可视化各种不同短语类型的类别关联。 “短语”一词表示任何单个或多词搭配。
由Paco Nathan创建的Pytextrank是Textrank算法的修改版本(Mihalcea and Tarau 2004)的实现。它涉及图中心算法以提取文档中最突出的短语的评分列表。在这里,被Spacy认可的命名实体。从Spacy 2.2版本开始,这些来自对Ontonotes 5训练的NER系统。
请安装pytextrank $ pip3 install pytextrank然后继续使用本教程。
要使用,请按照普通的形式构建语料库,但请确保使用Spacy解析每个文档,而不是内置的whitespace_nlp -type Tokenizer。请注意,不需要将pytextrank添加到Spacy管道中,因为它将由PyTextRankPhrases对象分别运行。我们将使用AssociationCompactor将图表中显示的短语数量减少到2000。生成的短语将被视为非文本功能,因为它们的文档分数与单词计数不符。
import pytextrank, spacy
import scattertext as st
nlp = spacy.load('en')
nlp.add_pipe("textrank", last=True)
convention_df = st.SampleCorpora.ConventionData2012.get_data().assign(
parse=lambda df: df.text.apply(nlp),
party=lambda df: df.party.apply({'democrat': 'Democratic', 'republican': 'Republican'}.get)
)
corpus = st.CorpusFromParsedDocuments(
convention_df,
category_col='party',
parsed_col='parse',
feats_from_spacy_doc=st.PyTextRankPhrases()
).build(
).compact(
AssociationCompactor(2000, use_non_text_features=True)
)
请注意,语料库中存在的术语被命名为实体,与频率计数相反,它们的分数是Textrank算法分配给它们的特征性分数。运行corpus.get_metadata_freq_df('')将返回每个类别的术语总和'Textrank分数。这些分数的致密等级将用于构建散点图。
term_category_scores = corpus.get_metadata_freq_df('')
print(term_category_scores)
'''
Democratic Republican
term
our future 1.113434 0.699103
your country 0.314057 0.000000
their home 0.385925 0.000000
our government 0.185483 0.462122
our workers 0.199704 0.210989
her family 0.540887 0.405552
our time 0.510930 0.410058
...
'''
在构建图块之前,让我们进行一些助手变量,因为汇总Textrank分数不是特别可解释的,我们将在metadata_description字段中显示每个分数的每个类别等级。单击期限后将显示这些内容。
term_ranks = pd.DataFrame(
np.argsort(np.argsort(-term_category_scores, axis=0), axis=0) + 1,
columns=term_category_scores.columns,
index=term_category_scores.index)
metadata_descriptions = {
term: '<br/>' + '<br/>'.join(
'<b>%s</b> TextRank score rank: %s/%s' % (cat, term_ranks.loc[term, cat], corpus.get_num_metadata())
for cat in corpus.get_categories())
for term in corpus.get_metadata()
}
我们可以通过几种方式构建学期分数。一个是标准密集差的差异,在这里的大多数两类对比图中都使用了分数,这将为我们提供与类别相关的短语。另一个是使用最大类别特定的分数,这将为我们提供每个类别中最突出的短语,无论其他类别的突出性如何。我们将在本教程中采用这两种方法,让我们计算第二种分数,以下特定于类别的突出性。
category_specific_prominence = term_category_scores.apply(
lambda r: r.Democratic if r.Democratic > r.Republican else -r.Republican,
axis=1
)
现在我们准备好输出此图表。请注意,我们使用一个dense_rank变换,该变换将相同倾斜的短语彼此倾斜。我们将category_specific_prominence用作分数,并将sort_by_dist设置为False ,以确保图表右侧显示的短语由得分排名,而不是距离左上或右上角的距离。由于将匹配的短语视为非文本功能,因此我们将它们编码为单个短语主题模型,并将topic_model_preview_size设置为0 ,以指示不应显示主题模型列表。最后,我们设置确保显示完整的文档。注意将以短语特定分数顺序显示文档。
html = produce_scattertext_explorer(
corpus,
category='Democratic',
not_category_name='Republican',
minimum_term_frequency=0,
pmi_threshold_coefficient=0,
width_in_pixels=1000,
transform=dense_rank,
metadata=corpus.get_df()['speaker'],
scores=category_specific_prominence,
sort_by_dist=False,
use_non_text_features=True,
topic_model_term_lists={term: [term] for term in corpus.get_metadata()},
topic_model_preview_size=0,
metadata_descriptions=metadata_descriptions,
use_full_doc=True
)
至少在事后分析上,每个类别中最相关的术语是有道理的。当提及(当时)州长罗姆尼时,民主党人在最中心的提及中使用了他的姓氏“罗姆尼”,而共和党人则使用了更熟悉和人性化的“手套”。就奥巴马总统而言,“奥巴马”一词都没有出现在最高任期中,但名字“巴拉克”是民主演讲中最中心的短语之一,反映了“手套”。
另外,我们可以在分数上与彩色短语点的差异差异,并确定要在图表的右侧显示的顶级短语。我们将scores设置为特定于类别的突出得分,而是将term_scorer=RankDifference()设置为注入确定术语分数创建过程的方式。
html = produce_scattertext_explorer(
corpus,
category='Democratic',
not_category_name='Republican',
minimum_term_frequency=0,
pmi_threshold_coefficient=0,
width_in_pixels=1000,
transform=dense_rank,
use_non_text_features=True,
metadata=corpus.get_df()['speaker'],
term_scorer=RankDifference(),
sort_by_dist=False,
topic_model_term_lists={term: [term] for term in corpus.get_metadata()},
topic_model_preview_size=0,
metadata_descriptions=metadata_descriptions,
use_full_doc=True
)
来自Abehandler的短语(Handler等人,2016年)使用言论部分序列的正则表达式来识别名词短语。这比使用Spacy的NP塑料具有优势,因为它倾向于将有意义的大名词阶段分离出来,而这些阶段不含附属物。
反对pytextrank,我们将只使用这些短语计数,将它们像其他任何术语一样对待。
import spacy
from scattertext import SampleCorpora, PhraseMachinePhrases, dense_rank, RankDifference, AssociationCompactor, produce_scattertext_explorer
from scattertext.CorpusFromPandas import CorpusFromPandas
corpus = (CorpusFromPandas(SampleCorpora.ConventionData2012.get_data(),
category_col='party',
text_col='text',
feats_from_spacy_doc=PhraseMachinePhrases(),
nlp=spacy.load('en', parser=False))
.build().compact(AssociationCompactor(4000)))
html = produce_scattertext_explorer(corpus,
category='democrat',
category_name='Democratic',
not_category_name='Republican',
minimum_term_frequency=0,
pmi_threshold_coefficient=0,
transform=dense_rank,
metadata=corpus.get_df()['speaker'],
term_scorer=RankDifference(),
width_in_pixels=1000)
在散台文本中,通常通过两种方式显示各种指标,包括术语关联。第一个也是最重要的是图表中的位置。第二个是点或文本的颜色。在ScatterText 0.2.21中,引入了一种可视化这些分数语义的方式:梯度为键。
默认情况下,梯度遵循d3_color_scale参数produce_scattertext_explorer , d3.interpolateRdYlBu默认情况下。
以下针对produce_scattertext_explorer (和类似功能)的其他参数允许操纵梯度。
include_gradient: bool (默认为False )是一个触发梯度外观的标志。left_gradient_term: Optional[str]指示梯度左侧写的文本。它是用gradient_text_color编写的,默认为category_name 。right_gradient_term: Optional[str]指示梯度左侧写的文本。它是用gradient_text_color编写的,默认情况下是not_category_name 。middle_gradient_term: Optional[str]指示梯度中间写的文本。它是中心梯度颜色的相反颜色,默认情况下为空。gradient_text_color: Optional[str]指示梯度上写的文本的固定颜色。如果没有,则默认为梯度的相反颜色。left_text_color: Optional[str]覆盖左梯度术语的gradient_text_colormiddle_text_color: Optional[str]覆盖中间梯度术语的gradient_text_colorright_text_color: Optional[str]覆盖正确梯度术语的gradient_text_colorgradient_colors: Optional[List[str]]十六进制颜色列表,包括'#',(例如, ['#0000ff', '#980067', '#cc3300', '#32cd00'] ),描述梯度。如果给出,这些覆盖d3_color_scale 。一个简单的示例如下。术语颜色定义为术语名称和#RRGGBB颜色之间的映射,作为term_color参数的一部分,颜色梯度在gradient_colors中定义。这
import matplotlib . pyplot as plt
import matplotlib as mpl
df = st . SampleCorpora . ConventionData2012 . get_data (). assign (
parse = lambda df : df . text . apply ( st . whitespace_nlp_with_sentences )
)
corpus = st . CorpusFromParsedDocuments (
df , category_col = 'party' , parsed_col = 'parse'
). build (). get_unigram_corpus (). compact ( st . AssociationCompactor ( 2000 ))
html = st . produce_scattertext_explorer (
corpus ,
category = 'democrat' ,
category_name = 'Democratic' ,
not_category_name = 'Republican' ,
minimum_term_frequency = 0 ,
pmi_threshold_coefficient = 0 ,
width_in_pixels = 1000 ,
metadata = corpus . get_df ()[ 'speaker' ],
transform = st . Scalers . dense_rank ,
include_gradient = True ,
left_gradient_term = "More Democratic" ,
right_gradient_term = "More Republican" ,
middle_gradient_term = 'Metric: Dense Rank Difference' ,
gradient_text_color = "white" ,
term_colors = dict ( zip (
corpus . get_terms (),
[
mpl . colors . to_hex ( x ) for x in plt . get_cmap ( 'brg' )(
st . Scalers . scale_center_zero_abs (
st . RankDifferenceScorer ( corpus ). set_categories ( 'democrat' ). get_scores ()). values
)
]
)),
gradient_colors = [ mpl . colors . to_hex ( x ) for x in plt . get_cmap ( 'brg' )( np . arange ( 1. , 0. , - 0.01 ))],
)为了可视化移情(Fast等人,2016年)主题和类别而不是术语,我们需要创建一个提取的主题和类别的Corpus ,而不是杂物和杂物。为此,请使用FeatsOnlyFromEmpath功能提取器。有关如何制作自己的示例,请参见源代码。
创建可视化时,将use_non_text_features=True参数传递到produce_scattertext_explorer 。这将指示它使用标记的插人主题和类别,而不是寻找术语。由于单击一个主题或类别标签时返回的文档将按照文档级别的类别 - 协调强度顺序,因此设置use_full_doc=True是有道理的,除非您拥有巨大的文档。否则,将显示前300个字符。
(新的0.0.26)。确保您在produce_scattertext_explorer中包括topic_model_term_lists=feat_builder.get_top_model_term_lists()以确保其大胆地向匹配主题模型的摘要的段落。
>>> feat_builder = st.FeatsFromOnlyEmpath()
>>> empath_corpus = st.CorpusFromParsedDocuments(convention_df,
... category_col='party',
... feats_from_spacy_doc=feat_builder,
... parsed_col='text').build()
>>> html = st.produce_scattertext_explorer(empath_corpus,
... category='democrat',
... category_name='Democratic',
... not_category_name='Republican',
... width_in_pixels=1000,
... metadata=convention_df['speaker'],
... use_non_text_features=True,
... use_full_doc=True,
... topic_model_term_lists=feat_builder.get_top_model_term_lists())
>>> open("Convention-Visualization-Empath.html", 'wb').write(html.encode('utf-8'))
C StatterText还包括一个功能构建器,以探索通用查询者标签CateGoires和文档类别之间的关系。我们将使用一种略有不同的方法,通过使用dirichlet先验的log-odds-ratio的z得分来研究胃肠道标签类别与政党的关系(Monroe 2008)。我们将使用produce_frequency_explorer绘图变化来可视化这种关系,将x轴设置为标签类别中一个单词的次数,而y轴为z得分。
有关总查询者的更多信息,请参阅“总查询者”主页。
我们将使用与以前相同的数据集,除非我们将使用FeatsFromGeneralInquirer功能构建器。
>>> general_inquirer_feature_builder = st.FeatsFromGeneralInquirer()
>>> corpus = st.CorpusFromPandas(convention_df,
... category_col='party',
... text_col='text',
... nlp=st.whitespace_nlp_with_sentences,
... feats_from_spacy_doc=general_inquirer_feature_builder).build()
接下来,我们将以类似的方式调用produce_frequency_explorer在上一节中称为produce_scattertext_explorer 。但是,有一些差异。首先,我们指定LogOddsRatioUninformativeDirichletPrior术语得分手,该术语得分在类别之间得分。 grey_threshold表示[-1.96,1.96](即P> 0.05)之间的分数应为灰色。参数metadata_descriptions=general_inquirer_feature_builder.get_definitions()指示字典将标签名称映射到字符串定义。单击标签时,词典中的定义将在图下面显示,如摘要之后的图像所示。
>>> html = st.produce_frequency_explorer(corpus,
... category='democrat',
... category_name='Democratic',
... not_category_name='Republican',
... metadata=convention_df['speaker'],
... use_non_text_features=True,
... use_full_doc=True,
... term_scorer=st.LogOddsRatioUninformativeDirichletPrior(),
... grey_threshold=1.96,
... width_in_pixels=1000,
... topic_model_term_lists=general_inquirer_feature_builder.get_top_model_term_lists(),
... metadata_descriptions=general_inquirer_feature_builder.get_definitions())
这是最终的图表。
如Graham等人所述,[道德基础理论]提出了六个心理结构作为道德思维的基础。 (2013)。这些基础是[Moralfoundations.org]所述:护理/危害,公平/作弊,忠诚/背叛,权威/颠覆,神圣/退化和自由/压迫。请参阅网站,以更深入地讨论这些基础。
Frimer等。 (2019年)创建了道德基础词典2.0,或者是词典的词典,该术语将道德基金会作为美德(有利于基金会)或恶习(反对基金会)。
该字典的使用方式与一般询问者相同。在此示例中,我们可以绘制Cohen的基础字数分数相对于涉及这些基础的频率单词的分数。
我们可以首先加载语料库,并使用st.FeatsFromMoralFoundationsDictionary()提取功能。
import scattertext as st
convention_df = st . SampleCorpora . ConventionData2012 . get_data ()
moral_foundations_feats = st . FeatsFromMoralFoundationsDictionary ()
corpus = st . CorpusFromPandas ( convention_df ,
category_col = 'party' ,
text_col = 'text' ,
nlp = st . whitespace_nlp_with_sentences ,
feats_from_spacy_doc = moral_foundations_feats ). build ()接下来,让我们使用Cohen的D术语得分手来分析语料库,并描述一组Cohen的D联想分数。
cohens_d_scorer = st . CohensD ( corpus ). use_metadata ()
term_scorer = cohens_d_scorer . set_categories ( 'democrat' , [ 'republican' ]). term_scorer . get_score_df ()哪个产生以下数据框架:
| cohens_d | cohens_d_se | cohens_d_z | cohens_d_p | hedges_g | hedges_g_se | hedges_g_z | hedges_g_p | M1 | M2 | count1 | count2 | 文档1 | DOCS2 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 护理 | 0.662891 | 0.149425 | 4.43629 | 4.57621E-06 | 0.660257 | 0.159049 | 4.15129 | 1.65302E-05 | 0.195049 | 0.12164 | 760 | 379 | 115 | 54 |
| 护理 | 0.24435 | 0.146025 | 1.67335 | 0.0471292 | 0.243379 | 0.152654 | 1.59432 | 0.0554325 | 0.0580005 | 0.0428358 | 244 | 121 | 80 | 41 |
| 公平 | 0.176794 | 0.145767 | 1.21286 | 0.112592 | 0.176092 | 0.152164 | 1.15725 | 0.123586 | 0.0502469 | 0.0403369 | 225 | 107 | 71 | 39 |
| 公平 | 0.0707162 | 0.145528 | 0.485928 | 0.313509 | 0.0704352 | 0.151711 | 0.464273 | 0.321226 | 0.00718627 | 0.00573227 | 32 | 14 | 21 | 10 |
| 授权 | -0.0187793 | 0.145486 | -0.12908 | 0.551353 | -0.0187047 | 0.15163 | -0.123357 | 0.549088 | 0.358192 | 0.361191 | 1281 | 788 | 122 | 66 |
| 权限 | -0.0354164 | 0.145494 | -0.243422 | 0.596161 | -0.0352757 | 0.151646 | -0.232619 | 0.591971 | 0.00353465 | 0.00390602 | 20 | 14 | 14 | 10 |
| 圣洁 | -0.512145 | 0.147848 | -3.46399 | 0.999734 | -0.51011 | 0.156098 | -3.26788 | 0.999458 | 0.0587987 | 0.101677 | 265 | 309 | 74 | 48 |
| 圣洁 | -0.108011 | 0.145589 | -0.74189 | 0.770923 | -0.107582 | 0.151826 | -0.708585 | 0.760709 | 0.00845048 | 0.0109339 | 35 | 28 | 23 | 20 |
| 忠诚度 | -0.413696 | 0.147031 | -2.81367 | 0.997551 | -0.412052 | 0.154558 | -2.666 | 0.996162 | 0.259296 | 0.309776 | 1056 | 717 | 119 | 66 |
| 忠诚度 | -0.0854683 | 0.145549 | -0.587213 | 0.72147 | -0.0851287 | 0.151751 | -0.560978 | 0.712594 | 0.00124518 | 0.00197022 | 5 | 5 | 5 | 4 |
此数据框架为我们提供了Cohen的D分数(及其标准错误和Z分数),Hedge's
请注意,Cohen的D是M1和M2的差,除以它们的汇总标准偏差。
现在,让我们绘制基础的D得分与它们的频率。
html = st . produce_frequency_explorer (
corpus ,
category = 'democrat' ,
category_name = 'Democratic' ,
not_category_name = 'Republican' ,
metadata = convention_df [ 'speaker' ],
use_non_text_features = True ,
use_full_doc = True ,
term_scorer = st . CohensD ( corpus ). use_metadata (),
grey_threshold = 0 ,
width_in_pixels = 1000 ,
topic_model_term_lists = moral_foundations_feats . get_top_model_term_lists (),
metadata_descriptions = moral_foundations_feats . get_definitions ()
)通常,最感兴趣的术语是整个语料库的特征。这些术语经常发生在所有正在研究的文档中,但是与一般术语频率相比,相对较少。
我们可以使用函数produce_characteristic_explorer在x轴上产生具有特征分数的图和类别缔合得分。
语料库的特征是研究中所有文档中的单词与一般英语语言频率列表之间的密集项等级的差异。有关阶级协会的分数,请参阅此演讲以进行更详尽的解释。
import scattertext as st
corpus = ( st . CorpusFromPandas ( st . SampleCorpora . ConventionData2012 . get_data (),
category_col = 'party' ,
text_col = 'text' ,
nlp = st . whitespace_nlp_with_sentences )
. build ()
. get_unigram_corpus ()
. compact ( st . ClassPercentageCompactor ( term_count = 2 ,
term_ranker = st . OncePerDocFrequencyRanker )))
html = st . produce_characteristic_explorer (
corpus ,
category = 'democrat' ,
category_name = 'Democratic' ,
not_category_name = 'Republican' ,
metadata = corpus . get_df ()[ 'speaker' ]
)
open ( 'demo_characteristic_chart.html' , 'wb' ). write ( html . encode ( 'utf-8' ))除了单词,阶段和主题外,我们还可以使每个点与文档相对应。让我们首先为2012年惯例数据集创建一个语料库对象。此解释遵循demo_pca_documents.py
import pandas as pd
from sklearn . feature_extraction . text import TfidfTransformer
import scattertext as st
from scipy . sparse . linalg import svds
convention_df = st . SampleCorpora . ConventionData2012 . get_data ()
convention_df [ 'parse' ] = convention_df [ 'text' ]. apply ( st . whitespace_nlp_with_sentences )
corpus = ( st . CorpusFromParsedDocuments ( convention_df ,
category_col = 'party' ,
parsed_col = 'parse' )
. build ()
. get_stoplisted_unigram_corpus ())接下来,让我们将文档名称添加为语料库对象中的元数据。 add_doc_names_as_metadata函数采用一系列文档名称,并填充了带有这些名称的新语料库的元数据。如果两个文档具有相同的名称,则将一个数字(以1开始)附加到名称。
corpus = corpus . add_doc_names_as_metadata ( corpus . get_df ()[ 'speaker' ])接下来,我们找到了语料库的术语文档矩阵,运行稀疏SVD的TF.IDF分数,并将它们添加到投影数据框架中,使X和Y轴使前两个单数值在语料库的元数据上索引,该数据与文档名称相对应。
embeddings = TfidfTransformer (). fit_transform ( corpus . get_term_doc_mat ())
u , s , vt = svds ( embeddings , k = 3 , maxiter = 20000 , which = 'LM' )
projection = pd . DataFrame ({ 'term' : corpus . get_metadata (), 'x' : u . T [ 0 ], 'y' : u . T [ 1 ]}). set_index ( 'term' )最后,将民主党人的分数定为1,共和党人为0,将共和党文件作为红点和民主文件作为蓝色。有关produce_pca_explorer函数的更多信息,请参见使用SVD可视化任何类型的单词嵌入。
category = 'democrat'
scores = ( corpus . get_category_ids () == corpus . get_categories (). index ( category )). astype ( int )
html = st . produce_pca_explorer ( corpus ,
category = category ,
category_name = 'Democratic' ,
not_category_name = 'Republican' ,
metadata = convention_df [ 'speaker' ],
width_in_pixels = 1000 ,
show_axes = False ,
use_non_text_features = True ,
use_full_doc = True ,
projection = projection ,
scores = scores ,
show_top_terms = False )单击以获取交互式版本
Cohen的D是用于衡量效应大小的流行度量。科恩的D和树篱的定义
> >> convention_df = st . SampleCorpora . ConventionData2012 . get_data ()
> >> corpus = ( st . CorpusFromPandas ( convention_df ,
... category_col = 'party' ,
... text_col = 'text' ,
... nlp = st . whitespace_nlp_with_sentences )
.... build ()
.... get_unigram_corpus ())我们可以创建一个术语得分手对象来检查效果大小和其他指标。
>> > term_scorer = st . CohensD ( corpus ). set_categories ( 'democrat' , [ 'republican' ])
>> > term_scorer . get_score_df (). sort_values ( by = 'cohens_d' , ascending = False ). head ()
cohens_d
cohens_d_se
cohens_d_z
cohens_d_p
hedges_g
hedges_g_se
hedges_g_z
hedges_g_p
m1
m2
obama
1.187378
0.024588
48.290444
0.000000e+00
1.187322
0.018419
64.461363
0.0
0.007778
0.002795
class 0.855859 0.020848 41.052045 0.000000e+00 0.855818 0.017227 49.677688 0.0 0.002222 0.000375
middle
0.826895
0.020553
40.232746
0.000000e+00
0.826857
0.017138
48.245626
0.0
0.002316
0.000400
president
0.820825
0.020492
40.056541
0.000000e+00
0.820786
0.017120
47.942661
0.0
0.010231
0.005369
barack
0.730624
0.019616
37.245725
6.213052e-304
0.730589
0.016862
43.327800
0.0
0.002547
0.000725我们对Cohen D的计算不是直接基于项计数。相反,在计算统计信息之前,我们将每个文档的项计数除以文档中的条款总数。 m1和m2分别是民主党人和共和党人发表的术语中的平均单词的平均部分。效果大小( cohens_d )是这些均值之间的差异除以汇总的标准偏差。 cohens_d_se是统计量的标准误差,而cohens_d_z和cohens_d_p是z得分和p值,表明效果的统计学意义。对冲的相应列存在
> >> st . produce_frequency_explorer (
corpus ,
category = 'democrat' ,
category_name = 'Democratic' ,
not_category_name = 'Republican' ,
term_scorer = st . CohensD ( corpus ),
metadata = convention_df [ 'speaker' ],
grey_threshold = 0
)单击以获取交互式版本。
悬崖的三角洲(Cliff 1993)使用非参数方法来计算效应大小。在我们的环境中,将术语的术语频率百分比与背景集的相比。对于每对文档,如果焦点文档的频率百分比大于背景,则给出1个分数,如果相同,则得分为0,如果不同的话,则得分为-1。请注意,假设文档长度类似地分布在焦点和背景语料库中。
请参阅[https://real-statistics com/non-parametric-tests/mann-whitney-test/cliffs-delta/]有关CliffsDelta中使用的公式。
以下是如何使用CliffsDelta查找和绘图术语分数的示例:
nlp = spacy . blank ( 'en' )
nlp . add_pipe ( 'sentencizer' )
convention_df = st . SampleCorpora . ConventionData2012 . get_data (). assign (
party = lambda df : df . party . apply (
lambda x : { 'democrat' : 'Dem' , 'republican' : 'Rep' }[ x ]),
SpacyParse = lambda df : df . text . progress_apply ( nlp )
)
corpus = st . CorpusFromParsedDocuments ( convention_df , category_col = 'party' , parsed_col = 'SpacyParse' ). build (
). remove_terms_used_in_less_than_num_docs ( 10 )
st . CliffsDelta ( corpus ). set_categories ( 'Dem' ). get_score_df (). sort_values ( by = 'Dem' , ascending = False ). iloc [: 10 ]| 学期 | 公制 | stddev | 低5.0%CI | 高5.0%CI | TERMCOUNT1 | TERMCOUNT2 | doccount1 | doccount2 |
|---|---|---|---|---|---|---|---|---|
| 奥巴马 | 0.597191 | 0.0266606 | -1.35507 | -1.03477 | 537 | 165 | 113 | 40 |
| 奥巴马总统 | 0.565903 | 0.0314348 | -2.37978 | -1.74131 | 351 | 78 | 100 | 30 |
| 总统 | 0.426337 | 0.0293418 | 1.22784 | 0.909226 | 740 | 301 | 113 | 53 |
| 中间 | 0.417591 | 0.0267365 | 1.10791 | 0.840932 | 164 | 27 | 68 | 12 |
| 班级 | 0.415373 | 0.0280622 | 1.09032 | 0.815649 | 161 | 25 | 69 | 14 |
| 巴拉克 | 0.406997 | 0.0281692 | 1.00765 | 0.750963 | 202 | 46 | 76 | 16 |
| 巴拉克·奥巴马 | 0.402562 | 0.027512 | 0.965359 | 0.723403 | 164 | 45 | 76 | 16 |
| 那是 | 0.384085 | 0.0227344 | 0.809747 | 0.634705 | 236 | 91 | 89 | 31 |
| 奥巴马。 | 0.356245 | 0.0237453 | 0.664688 | 0.509631 | 70 | 5 | 49 | 4 |
| 为了 | 0.35526 | 0.0364138 | 0.70142 | 0.46487 | 1020 | 542 | 119 | 62 |
我们可以使用dataframe_scattertext优雅地显示悬崖的三角洲分数,并使用include_gradient=True参数描述点着色方案。我们将left_gradient_term , middle_gradient_term和right_gradient_term参数设置为将出现在其相关值中的字符串。
plot_df = st . CliffsDelta (
corpus
). set_categories (
category_name = 'Dem'
). get_score_df (). rename ( columns = { 'Metric' : 'CliffsDelta' }). assign (
Frequency = lambda df : df . TermCount1 + df . TermCount1 ,
X = lambda df : df . Frequency ,
Y = lambda df : df . CliffsDelta ,
Xpos = lambda df : st . Scalers . dense_rank ( df . X ),
Ypos = lambda df : st . Scalers . scale_center_zero_abs ( df . Y ),
ColorScore = lambda df : df . Ypos ,
)
html = st . dataframe_scattertext (
corpus ,
plot_df = plot_df ,
category = 'Dem' ,
category_name = 'Dem' ,
not_category_name = 'Rep' ,
width_in_pixels = 1000 ,
ignore_categories = False ,
metadata = lambda corpus : corpus . get_df ()[ 'speaker' ],
color_score_column = 'ColorScore' ,
left_list_column = 'ColorScore' ,
show_characteristic = False ,
y_label = "Cliff's Delta" ,
x_label = 'Frequency Ranks' ,
y_axis_labels = [ f'More Rep: delta= { plot_df . CliffsDelta . max ():.3f } ' ,
'' ,
f'More Dem: delta= { - plot_df . CliffsDelta . max ():.3f } ' ],
tooltip_columns = [ 'Frequency' , 'CliffsDelta' ],
term_description_columns = [ 'CliffsDelta' , 'Stddev' , 'Low-95.0% CI' , 'High-95.0% CI' ],
header_names = { 'upper' : 'Top Dem' , 'lower' : 'Top Reps' },
horizontal_line_y_position = 0 ,
include_gradient = True ,
left_gradient_term = 'More Republican' ,
right_gradient_term = 'More Democratic' ,
middle_gradient_term = "Metric: Cliff's Delta" ,
)在0.1.8版中添加了双法线分离(BNS)(Forman,2008)。使用(bns)的变体
corpus = ( st . CorpusFromPandas ( convention_df ,
category_col = 'party' ,
text_col = 'text' ,
nlp = st . whitespace_nlp_with_sentences )
. build ()
. get_unigram_corpus ()
. remove_infrequent_words ( 3 , term_ranker = st . OncePerDocFrequencyRanker ))
term_scorer = ( st . BNSScorer ( corpus ). set_categories ( 'democrat' ))
print ( term_scorer . get_score_df (). sort_values ( by = 'democrat BNS' ))
html = st . produce_frequency_explorer (
corpus ,
category = 'democrat' ,
category_name = 'Democratic' ,
not_category_name = 'Republican' ,
scores = term_scorer . get_score_df ()[ 'democrat BNS' ]. reindex ( corpus . get_terms ()). values ,
metadata = lambda c : c . get_df ()[ 'speaker' ],
minimum_term_frequency = 0 ,
grey_threshold = 0 ,
y_label = f'Bi-normal Separation (alpha= { term_scorer . prior_counts } )'
)BNS使用算法发现α进行了术语。 
我们可以训练分类器来为每个文档产生预测分数。通常,分类器或回归剂使用的功能考虑了以外的特征,无论是散布,主题,语言外,神经等。
我们可以使用ScatterText可视化界面(或实际上任何特征表示)与模型产生的文档分数之间的相关性。
在下面的示例中,我们使用整个会议数据集中使用Umigram和Bi-gram功能训练线性SVM,并使用模型对每个文档进行预测,最后使用Pearson的
from sklearn . svm import LinearSVC
import scattertext as st
df = st . SampleCorpora . ConventionData2012 . get_data (). assign (
parse = lambda df : df . text . apply ( st . whitespace_nlp_with_sentences )
)
corpus = st . CorpusFromParsedDocuments (
df , category_col = 'party' , parsed_col = 'parse'
). build ()
X = corpus . get_term_doc_mat ()
y = corpus . get_category_ids ()
clf = LinearSVC ()
clf . fit ( X = X , y = y == corpus . get_categories (). index ( 'democrat' ))
doc_scores = clf . decision_function ( X = X )
compactcorpus = corpus . get_unigram_corpus (). compact ( st . AssociationCompactor ( 2000 ))
plot_df = st . Correlations (). set_correlation_type (
'pearsonr'
). get_correlation_df (
corpus = compactcorpus ,
document_scores = doc_scores
). reindex ( compactcorpus . get_terms ()). assign (
X = lambda df : df . Frequency ,
Y = lambda df : df [ 'r' ],
Xpos = lambda df : st . Scalers . dense_rank ( df . X ),
Ypos = lambda df : st . Scalers . scale_center_zero_abs ( df . Y ),
SuppressDisplay = False ,
ColorScore = lambda df : df . Ypos ,
)
html = st . dataframe_scattertext (
compactcorpus ,
plot_df = plot_df ,
category = 'democrat' ,
category_name = 'Democratic' ,
not_category_name = 'Republican' ,
width_in_pixels = 1000 ,
metadata = lambda c : c . get_df ()[ 'speaker' ],
unified_context = False ,
ignore_categories = False ,
color_score_column = 'ColorScore' ,
left_list_column = 'ColorScore' ,
y_label = "Pearson r (correlation to SVM document score)" ,
x_label = 'Frequency Ranks' ,
header_names = { 'upper' : 'Top Democratic' ,
'lower' : 'Top Republican' },
)散点文字计算界定特征时,依赖一组通用域英语单词频率
分数。在非英语数据或特定域中使用运行的散点文字时,分数的质量将降低。
确保您在ScatterText上0.1.6或更高。
为了解决这个问题,可以使用Corpus.set_background_corpus函数将自定义的背景分数添加到类似语料库的对象。该函数采用pd.Series对象,以数字计数值为单词。
默认情况下,[!理解尺度f得分](缩放f-SCORE)用于对特征术语进行排名。
下面的示例说明了使用波兰背景单词频率。
首先,我们使用https://github.com/opragramador/most-common-words-by-by-language repo中的列表中的列表中将波兰单词映射到其频率上。
polish_word_frequencies = pd . read_csv (
'https://raw.githubusercontent.com/hermitdave/FrequencyWords/master/content/2016/pl/pl_50k.txt' ,
sep = ' ' ,
names = [ 'Word' , 'Frequency' ]
). set_index ( 'Word' )[ 'Frequency' ]注意该系列的组成
>> > polish_word_frequencies
Word
nie
5875385
to
4388099
się
3507076
w
2723767
na
2309765
Name : Frequency , dtype : int64接下来,我们构建了一个数据框, reviews_df ,由https://klejbenchmark.com/tasks/corpus(Kocoń等人(Kocoń等,2012)中出现的文档(对非Polish Speaker)组成。请注意,此数据属于CC BY-NC-SA 4.0许可证。 These are labeled as "__label__meta_plus_m" and "__label__meta_minus_m". We will use Scattertext to compare those reviews and determine
nlp = spacy . blank ( 'pl' )
nlp . add_pipe ( 'sentencizer' )
with ZipFile ( io . BytesIO ( urlopen (
'https://klejbenchmark.com/static/data/klej_polemo2.0-in.zip'
). read ())) as zf :
review_df = pd . read_csv ( zf . open ( 'train.tsv' ), sep = ' t ' )[
lambda df : df . target . isin ([ '__label__meta_plus_m' , '__label__meta_minus_m' ])
]. assign (
Parse = lambda df : df . sentence . apply ( nlp )
) Next, we wish to create a ParsedCorpus object from review_df . In preparation, we first assemble a list of Polish stopwords from the stopwords repository. We also create the not_a_word regular expression to filter out terms which do not contain a letter.
polish_stopwords = {
stopword for stopword in
urlopen (
'https://raw.githubusercontent.com/bieli/stopwords/master/polish.stopwords.txt'
). read (). decode ( 'utf-8' ). split ( ' n ' )
if stopword . strip ()
}
not_a_word = re . compile ( r'^W+$' ) With these present, we can build a corpus from review_df with the category being the binary "target" column. We reduce the term space to unigrams and then run the filter_out which takes a function to determine if a term should be removed from the corpus. The function identifies terms which are in the Polish stoplist or do not contain a letter. Finally, terms occurring less than 20 times in the corpus are removed.
We set the background frequency Series we created early as the background corpus.
corpus = st . CorpusFromParsedDocuments (
review_df ,
category_col = 'target' ,
parsed_col = 'Parse'
). build (
). get_unigram_corpus (
). filter_out (
lambda term : term in polish_stopwords or not_a_word . match ( term ) is not None
). remove_infrequent_words (
minimum_term_count = 20
). set_background_corpus (
polish_word_frequencies
)Note that a minimum word count of 20 was chosen to ensure that only around 2,000 terms would be displayed
>> > corpus . get_num_terms ()
2023 Running get_term_and_background_counts shows us total term counts in the corpus compare to background frequency counts. We limit this to terms which only occur in the corpus.
>> > corpus . get_term_and_background_counts ()[
...
lambda df : df . corpus > 0
...]. sort_values ( by = 'corpus' , ascending = False )
background
corpus
m
341583838.0
4819.0
hotelu
33108.0
1812.0
hotel
297974790.0
1651.0
doktor
154840.0
1534.0
polecam
0.0
1438.0
.........
szoku
0.0
21.0
badaniem
0.0
21.0
balkonu
0.0
21.0
stopnia
0.0
21.0
wobec
0.0
21.0Interesting, the term "polecam" appears very frequently in the corpus, but does not appear at all in the background corpus, making it highly characteristic. Judging from Google Translate, it appears to mean something related to "recommend".
We are now ready to display the plot.
html = st . produce_scattertext_explorer (
corpus ,
category = '__label__meta_plus_m' ,
category_name = 'Plus-M' ,
not_category_name = 'Minus-M' ,
minimum_term_frequency = 1 ,
width_in_pixels = 1000 ,
transform = st . Scalers . dense_rank
) We can change the formula which is used to produce the Characteristic scores using the characteristic_scorer parameter to produce_scattertext_explorer .
It takes a instance of a descendant of the CharacteristicScorer class. See DenseRankCharacteristicness.py for an example of how to make your own.
Example of plotting with a modified characteristic scorer,
html = st . produce_scattertext_explorer (
corpus ,
category = '__label__meta_plus_m' ,
category_name = 'Plus-M' ,
not_category_name = 'Minus-M' ,
minimum_term_frequency = 1 ,
transform = st . Scalers . dense_rank ,
characteristic_scorer = st . DenseRankCharacteristicness (),
term_ranker = st . termranking . AbsoluteFrequencyRanker ,
term_scorer = st . ScaledFScorePresets ( beta = 1 , one_to_neg_one = True )
). encode ( 'utf-8' ))
print ( 'open ' + fn )Note that numbers show up as more characteristic using the Dense Rank Difference. It may be they occur unusually frequently in this corpus, or perhaps the background word frequencies under counted mumbers.
Word productivity is one strategy for plotting word-based charts describing an uncategorized corpus.
Productivity is defined in Schumann (2016) (Jason: check this) as the entropy of ngrams which contain a term. For the entropy computation, the probability of an n-gram wrt the term whose productivity is being calculated is the frequency of the n-gram divided by the term's frequency.
Since productivity highly correlates with frequency, the recommended metric to plot is the dense rank difference between frequency and productivity.
The snippet below plots words in the convention corpus based on their log frequency and their productivity.
The function st.whole_corpus_productivity_scores returns a DataFrame giving each word's productivity. For example, in the convention corpus,
Productivity scores should be calculated on a Corpus -like object which contains a complete set of unigrams and at least bigrams. This corpus should not be compacted before the productivity score calculation.
The terms with lower productivity have more limited usage (eg, "thank" for "thank you", "united" for "united steates") while the terms with higher productivity occurr in a wider varity of contexts ("getting", "actually", "political", etc.).
import spacy
import scattertext as st
corpus_no_cat = st . CorpusWithoutCategoriesFromParsedDocuments (
st . SampleCorpora . ConventionData2012 . get_data (). assign (
Parse = lambda df : [ x for x in spacy . load ( 'en_core_web_sm' ). pipe ( df . text )]),
parsed_col = 'Parse'
). build ()
compact_corpus_no_cat = corpus_no_cat . get_stoplisted_unigram_corpus (). remove_infrequent_words ( 9 )
plot_df = st . whole_corpus_productivity_scores ( corpus_no_cat ). assign (
RankDelta = lambda df : st . RankDifference (). get_scores (
a = df . Productivity ,
b = df . Frequency
)
). reindex (
compact_corpus_no_cat . get_terms ()
). dropna (). assign (
X = lambda df : df . Frequency ,
Xpos = lambda df : st . Scalers . log_scale ( df . Frequency ),
Y = lambda df : df . RankDelta ,
Ypos = lambda df : st . Scalers . scale ( df . RankDelta ),
)
html = st . dataframe_scattertext (
compact_corpus_no_cat . whitelist_terms ( plot_df . index ),
plot_df = plot_df ,
metadata = lambda df : df . get_df ()[ 'speaker' ],
ignore_categories = True ,
x_label = 'Rank Frequency' ,
y_label = "Productivity" ,
left_list_column = 'Ypos' ,
color_score_column = 'Ypos' ,
y_axis_labels = [ 'Least Productive' , 'Average Productivity' , 'Most Productive' ],
header_names = { 'upper' : 'Most Productive' , 'lower' : 'Least Productive' , 'right' : 'Characteristic' },
horizontal_line_y_position = 0
)Let's now turn our attention to a novel term scoring metric, Scaled F-Score. We'll examine this on a unigram version of the Rotten Tomatoes corpus (Pang et al. 2002). It contains excerpts of positive and negative movie reviews.
Please see Scaled F Score Explanation for a notebook version of this analysis.
from scipy . stats import hmean
term_freq_df = corpus . get_unigram_corpus (). get_term_freq_df ()[[ 'Positive freq' , 'Negative freq' ]]
term_freq_df = term_freq_df [ term_freq_df . sum ( axis = 1 ) > 0 ]
term_freq_df [ 'pos_precision' ] = ( term_freq_df [ 'Positive freq' ] * 1. /
( term_freq_df [ 'Positive freq' ] + term_freq_df [ 'Negative freq' ]))
term_freq_df [ 'pos_freq_pct' ] = ( term_freq_df [ 'Positive freq' ] * 1.
/ term_freq_df [ 'Positive freq' ]. sum ())
term_freq_df [ 'pos_hmean' ] = ( term_freq_df
. apply ( lambda x : ( hmean ([ x [ 'pos_precision' ], x [ 'pos_freq_pct' ]])
if x [ 'pos_precision' ] > 0 and x [ 'pos_freq_pct' ] > 0
else 0 ), axis = 1 ))
term_freq_df . sort_values ( by = 'pos_hmean' , ascending = False ). iloc [: 10 ]If we plot term frequency on the x-axis and the percentage of a term's occurrences which are in positive documents (ie, its precision) on the y-axis, we can see that low-frequency terms have a much higher variation in the precision. Given these terms have low frequencies, the harmonic means are low. Thus, the only terms which have a high harmonic mean are extremely frequent words which tend to all have near average precisions.
freq = term_freq_df . pos_freq_pct . values
prec = term_freq_df . pos_precision . values
html = st . produce_scattertext_explorer (
corpus . remove_terms ( set ( corpus . get_terms ()) - set ( term_freq_df . index )),
category = 'Positive' ,
not_category_name = 'Negative' ,
not_categories = [ 'Negative' ],
x_label = 'Portion of words used in positive reviews' ,
original_x = freq ,
x_coords = ( freq - freq . min ()) / freq . max (),
x_axis_values = [ int ( freq . min () * 1000 ) / 1000. ,
int ( freq . max () * 1000 ) / 1000. ],
y_label = 'Portion of documents containing word that are positive' ,
original_y = prec ,
y_coords = ( prec - prec . min ()) / prec . max (),
y_axis_values = [ int ( prec . min () * 1000 ) / 1000. ,
int (( prec . max () / 2. ) * 1000 ) / 1000. ,
int ( prec . max () * 1000 ) / 1000. ],
scores = term_freq_df . pos_hmean . values ,
sort_by_dist = False ,
show_characteristic = False
)
file_name = 'not_normed_freq_prec.html'
open ( file_name , 'wb' ). write ( html . encode ( 'utf-8' ))
IFrame ( src = file_name , width = 1300 , height = 700 ) from scipy . stats import norm
def normcdf ( x ):
return norm . cdf ( x , x . mean (), x . std ())
term_freq_df [ 'pos_precision_normcdf' ] = normcdf ( term_freq_df . pos_precision )
term_freq_df [ 'pos_freq_pct_normcdf' ] = normcdf ( term_freq_df . pos_freq_pct . values )
term_freq_df [ 'pos_scaled_f_score' ] = hmean (
[ term_freq_df [ 'pos_precision_normcdf' ], term_freq_df [ 'pos_freq_pct_normcdf' ]])
term_freq_df . sort_values ( by = 'pos_scaled_f_score' , ascending = False ). iloc [: 10 ] freq = term_freq_df . pos_freq_pct_normcdf . values
prec = term_freq_df . pos_precision_normcdf . values
html = st . produce_scattertext_explorer (
corpus . remove_terms ( set ( corpus . get_terms ()) - set ( term_freq_df . index )),
category = 'Positive' ,
not_category_name = 'Negative' ,
not_categories = [ 'Negative' ],
x_label = 'Portion of words used in positive reviews (norm-cdf)' ,
original_x = freq ,
x_coords = ( freq - freq . min ()) / freq . max (),
x_axis_values = [ int ( freq . min () * 1000 ) / 1000. ,
int ( freq . max () * 1000 ) / 1000. ],
y_label = 'documents containing word that are positive (norm-cdf)' ,
original_y = prec ,
y_coords = ( prec - prec . min ()) / prec . max (),
y_axis_values = [ int ( prec . min () * 1000 ) / 1000. ,
int (( prec . max () / 2. ) * 1000 ) / 1000. ,
int ( prec . max () * 1000 ) / 1000. ],
scores = term_freq_df . pos_scaled_f_score . values ,
sort_by_dist = False ,
show_characteristic = False
) term_freq_df [ 'neg_precision_normcdf' ] = normcdf (( term_freq_df [ 'Negative freq' ] * 1. /
( term_freq_df [ 'Negative freq' ] + term_freq_df [ 'Positive freq' ])))
term_freq_df [ 'neg_freq_pct_normcdf' ] = normcdf (( term_freq_df [ 'Negative freq' ] * 1.
/ term_freq_df [ 'Negative freq' ]. sum ()))
term_freq_df [ 'neg_scaled_f_score' ] = hmean (
[ term_freq_df [ 'neg_precision_normcdf' ], term_freq_df [ 'neg_freq_pct_normcdf' ]])
term_freq_df [ 'scaled_f_score' ] = 0
term_freq_df . loc [ term_freq_df [ 'pos_scaled_f_score' ] > term_freq_df [ 'neg_scaled_f_score' ],
'scaled_f_score' ] = term_freq_df [ 'pos_scaled_f_score' ]
term_freq_df . loc [ term_freq_df [ 'pos_scaled_f_score' ] < term_freq_df [ 'neg_scaled_f_score' ],
'scaled_f_score' ] = 1 - term_freq_df [ 'neg_scaled_f_score' ]
term_freq_df [ 'scaled_f_score' ] = 2 * ( term_freq_df [ 'scaled_f_score' ] - 0.5 )
term_freq_df . sort_values ( by = 'scaled_f_score' , ascending = True ). iloc [: 10 ] is_pos = term_freq_df . pos_scaled_f_score > term_freq_df . neg_scaled_f_score
freq = term_freq_df . pos_freq_pct_normcdf * is_pos - term_freq_df . neg_freq_pct_normcdf * ~ is_pos
prec = term_freq_df . pos_precision_normcdf * is_pos - term_freq_df . neg_precision_normcdf * ~ is_pos
def scale ( ar ):
return ( ar - ar . min ()) / ( ar . max () - ar . min ())
def close_gap ( ar ):
ar [ ar > 0 ] -= ar [ ar > 0 ]. min ()
ar [ ar < 0 ] -= ar [ ar < 0 ]. max ()
return ar
html = st . produce_scattertext_explorer (
corpus . remove_terms ( set ( corpus . get_terms ()) - set ( term_freq_df . index )),
category = 'Positive' ,
not_category_name = 'Negative' ,
not_categories = [ 'Negative' ],
x_label = 'Frequency' ,
original_x = freq ,
x_coords = scale ( close_gap ( freq )),
x_axis_labels = [ 'Frequent in Neg' ,
'Not Frequent' ,
'Frequent in Pos' ],
y_label = 'Precision' ,
original_y = prec ,
y_coords = scale ( close_gap ( prec )),
y_axis_labels = [ 'Neg Precise' ,
'Imprecise' ,
'Pos Precise' ],
scores = ( term_freq_df . scaled_f_score . values + 1 ) / 2 ,
sort_by_dist = False ,
show_characteristic = False
) We can use st.ScaledFScorePresets as a term scorer to display terms' Scaled F-Score on the y-axis and term frequencies on the x-axis.
html = st . produce_frequency_explorer (
corpus . remove_terms ( set ( corpus . get_terms ()) - set ( term_freq_df . index )),
category = 'Positive' ,
not_category_name = 'Negative' ,
not_categories = [ 'Negative' ],
term_scorer = st . ScaledFScorePresets ( beta = 1 , one_to_neg_one = True ),
metadata = rdf [ 'movie_name' ],
grey_threshold = 0
)Scaled F-Score is not the only scoring method included in Scattertext. Please click on one of the links below to view a notebook which describes how other class association scores work and can be visualized through Scattertext.
New in 0.0.2.73 is the delta JS-Divergence scorer DeltaJSDivergence scorer (Gallagher et al. 2020), and its corresponding compactor (JSDCompactor.) See demo_deltajsd.py for an example usage.
New in 0.0.2.72
Scattertext was originally set up to visualize corpora objects, which are connected sets of documents and terms to visualize. The "compaction" process allows users to eliminate terms which may not be associated with a category using a variety of feature selection methods. The issue with this is that the terms eliminated during the selection process are not taken into account when scaling term positions.
This issue can be mitigated by using the position-select-plot process, where term positions are pre-determined before the selection process is made.
Let's first use the 2012 conventions corpus, update the category names, and create a unigram corpus.
import scattertext as st
import numpy as np
df = st . SampleCorpora . ConventionData2012 . get_data (). assign (
parse = lambda df : df . text . apply ( st . whitespace_nlp_with_sentences )
). assign ( party = lambda df : df [ 'party' ]. apply ({ 'democrat' : 'Democratic' , 'republican' : 'Republican' }. get ))
corpus = st . CorpusFromParsedDocuments (
df , category_col = 'party' , parsed_col = 'parse'
). build (). get_unigram_corpus ()
category_name = 'Democratic'
not_category_name = 'Republican'Next, let's create a dataframe consisting of the original counts and their log-scale positions.
def get_log_scale_df ( corpus , y_category , x_category ):
term_coord_df = corpus . get_term_freq_df ( '' )
# Log scale term counts (with a smoothing constant) as the initial coordinates
coord_columns = []
for category in [ y_category , x_category ]:
col_name = category + '_coord'
term_coord_df [ col_name ] = np . log ( term_coord_df [ category ] + 1e-6 ) / np . log ( 2 )
coord_columns . append ( col_name )
# Scale these coordinates to between 0 and 1
min_offset = term_coord_df [ coord_columns ]. min ( axis = 0 ). min ()
for coord_column in coord_columns :
term_coord_df [ coord_column ] -= min_offset
max_offset = term_coord_df [ coord_columns ]. max ( axis = 0 ). max ()
for coord_column in coord_columns :
term_coord_df [ coord_column ] /= max_offset
return term_coord_df
# Get term coordinates from original corpus
term_coordinates = get_log_scale_df ( corpus , category_name , not_category_name )
print ( term_coordinates ) Here is a preview of the term_coordinates dataframe. The Democrat and Republican columns contain the term counts, while the _coord columns contain their logged coordinates. Visualizing 7,973 terms is difficult (but possible) for people running Scattertext on most computers.
Democratic Republican Democratic_coord Republican_coord
term
thank 158 205 0.860166 0.872032
you 836 794 0.936078 0.933729
so 337 212 0.894681 0.873562
much 84 76 0.831380 0.826820
very 62 75 0.817543 0.826216
... ... ... ... ...
precinct 0 2 0.000000 0.661076
godspeed 0 1 0.000000 0.629493
beauty 0 1 0.000000 0.629493
bumper 0 1 0.000000 0.629493
sticker 0 1 0.000000 0.629493
[7973 rows x 4 columns]
We can visualize this full data set by running the following code block. We'll create a custom Javascript function to populate the tooltip with the original term counts, and create a Scattertext Explorer where the x and y coordinates and original values are specified from the data frame. Additionally, we can use show_diagonal=True to draw a dashed diagonal line across the plot area.
You can click the chart below to see the interactive version. Note that it will take a while to load.
# The tooltip JS function. Note that d is is the term data object, and ox and oy are the original x- and y-
# axis counts.
get_tooltip_content = ('(function(d) {return d.term + "<br/>' + not_category_name + ' Count: " ' +
'+ d.ox +"<br/>' + category_name + ' Count: " + d.oy})')
html_orig = st.produce_scattertext_explorer(
corpus,
category=category_name,
not_category_name=not_category_name,
minimum_term_frequency=0,
pmi_threshold_coefficient=0,
width_in_pixels=1000,
metadata=corpus.get_df()['speaker'],
show_diagonal=True,
original_y=term_coordinates[category_name],
original_x=term_coordinates[not_category_name],
x_coords=term_coordinates[category_name + '_coord'],
y_coords=term_coordinates[not_category_name + '_coord'],
max_overlapping=3,
use_global_scale=True,
get_tooltip_content=get_tooltip_content,
)
Next, we can visualize the compacted version of the corpus. The compaction, using ClassPercentageCompactor , selects terms which frequently in each category. The term_count parameter, set to 2, is used to determine the percentage threshold for terms to keep in a particular category. This is done using by calculating the percentile of terms (types) in each category which appear more than two times. We find the smallest percentile, and only include terms which occur above that percentile in a given category.
Note that this compaction leaves only 2,828 terms. This number is much easier for Scattertext to display in a browser.
# Select terms which appear a minimum threshold in both corpora
compact_corpus = corpus . compact ( st . ClassPercentageCompactor ( term_count = 2 ))
# Only take term coordinates of terms remaining in corpus
term_coordinates = term_coordinates . loc [ compact_corpus . get_terms ()]
html_compact = st . produce_scattertext_explorer (
compact_corpus ,
category = category_name ,
not_category_name = not_category_name ,
minimum_term_frequency = 0 ,
pmi_threshold_coefficient = 0 ,
width_in_pixels = 1000 ,
metadata = corpus . get_df ()[ 'speaker' ],
show_diagonal = True ,
original_y = term_coordinates [ category_name ],
original_x = term_coordinates [ not_category_name ],
x_coords = term_coordinates [ category_name + '_coord' ],
y_coords = term_coordinates [ not_category_name + '_coord' ],
max_overlapping = 3 ,
use_global_scale = True ,
get_tooltip_content = get_tooltip_content ,
) Occasionally, only term frequency statistics are available. This may happen in the case of very large, lost, or proprietary data sets. TermCategoryFrequencies is a corpus representation,that can accept this sort of data, along with any categorized documents that happen to be available.
Let use the Corpus of Contemporary American English as an example.
We'll construct a visualization to analyze the difference between spoken American English and English that occurs in fiction.
df = ( pd . read_excel ( 'https://www.wordfrequency.info/files/genres_sample.xls' )
. dropna ()
. set_index ( 'lemma' )[[ 'SPOKEN' , 'FICTION' ]]
. iloc [: 1000 ])
df . head ()
'''
SPOKEN FICTION
lemma
the 3859682.0 4092394.0
I 1346545.0 1382716.0
they 609735.0 352405.0
she 212920.0 798208.0
would 233766.0 229865.0
''' Transforming this into a visualization is extremely easy. Just pass a dataframe indexed on terms with columns indicating category-counts into the the TermCategoryFrequencies constructor.
term_cat_freq = st . TermCategoryFrequencies ( df ) And call produce_scattertext_explorer normally:
html = st . produce_scattertext_explorer (
term_cat_freq ,
category = 'SPOKEN' ,
category_name = 'Spoken' ,
not_category_name = 'Fiction' ,
) If you'd like to incorporate some documents into the visualization, you can add them into to the TermCategoyFrequencies object.
First, let's extract some example Fiction and Spoken documents from the sample COCA corpus.
import requests , zipfile , io
coca_sample_url = 'http://corpus.byu.edu/cocatext/samples/text.zip'
zip_file = zipfile . ZipFile ( io . BytesIO ( requests . get ( coca_sample_url ). content ))
document_df = pd . DataFrame (
[{ 'text' : zip_file . open ( fn ). read (). decode ( 'utf-8' ),
'category' : 'SPOKEN' }
for fn in zip_file . filelist if fn . filename . startswith ( 'w_spok' )][: 2 ]
+ [{ 'text' : zip_file . open ( fn ). read (). decode ( 'utf-8' ),
'category' : 'FICTION' }
for fn in zip_file . filelist if fn . filename . startswith ( 'w_fic' )][: 2 ]) And we'll pass the documents_df dataframe into TermCategoryFrequencies via the document_category_df parameter. Ensure the dataframe has two columns, 'text' and 'category'. Afterward, we can call produce_scattertext_explorer (or your visualization function of choice) normally.
doc_term_cat_freq = st . TermCategoryFrequencies ( df , document_category_df = document_df )
html = st . produce_scattertext_explorer (
doc_term_cat_freq ,
category = 'SPOKEN' ,
category_name = 'Spoken' ,
not_category_name = 'Fiction' ,
)Word representations have recently become a hot topic in NLP. While lots of work has been done visualizing how terms relate to one another given their scores (eg, http://projector.tensorflow.org/), none to my knowledge has been done visualizing how we can use these to examine how document categories differ.
In this example given a query term, "jobs", we can see how Republicans and Democrats talk about it differently.
In this configuration of Scattertext, words are colored by their similarity to a query phrase.
This is done using spaCy-provided GloVe word vectors (trained on the Common Crawl corpus). The cosine distance between vectors is used, with mean vectors used for phrases.
The calculation of the most similar terms associated with each category is a simple heuristic. First, sets of terms closely associated with a category are found. Second, these terms are ranked based on their similarity to the query, and the top rank terms are displayed to the right of the scatterplot.
A term is considered associated if its p-value is less than 0.05. P-values are determined using Monroe et al. (2008)'s difference in the weighted log-odds-ratios with an uninformative Dirichlet prior. This is the only model-based method discussed in Monroe et al. that does not rely on a large, in-domain background corpus. Since we are scoring bigrams in addition to the unigrams scored by Monroe, the size of the corpus would have to be larger to have high enough bigram counts for proper penalization. This function relies the Dirichlet distribution's parameter alpha, a vector, which is uniformly set to 0.01.
Here is the code to produce such a visualization.
>>> from scattertext import word_similarity_explorer
>>> html = word_similarity_explorer(corpus,
... category='democrat',
... category_name='Democratic',
... not_category_name='Republican',
... target_term='jobs',
... minimum_term_frequency=5,
... pmi_threshold_coefficient=4,
... width_in_pixels=1000,
... metadata=convention_df['speaker'],
... alpha=0.01,
... max_p_val=0.05,
... save_svg_button=True)
>>> open("Convention-Visualization-Jobs.html", 'wb').write(html.encode('utf-8'))
Scattertext can interface with Gensim Word2Vec models. For example, here's a snippet from demo_gensim_similarity.py which illustrates how to train and use a word2vec model on a corpus. Note the similarities produced reflect quirks of the corpus, eg, "8" tends to refer to the 8% unemployment rate at the time of the convention.
import spacy
from gensim . models import word2vec
from scattertext import SampleCorpora , word_similarity_explorer_gensim , Word2VecFromParsedCorpus
from scattertext . CorpusFromParsedDocuments import CorpusFromParsedDocuments
nlp = spacy . en . English ()
convention_df = SampleCorpora . ConventionData2012 . get_data ()
convention_df [ 'parsed' ] = convention_df . text . apply ( nlp )
corpus = CorpusFromParsedDocuments ( convention_df , category_col = 'party' , parsed_col = 'parsed' ). build ()
model = word2vec . Word2Vec ( size = 300 ,
alpha = 0.025 ,
window = 5 ,
min_count = 5 ,
max_vocab_size = None ,
sample = 0 ,
seed = 1 ,
workers = 1 ,
min_alpha = 0.0001 ,
sg = 1 ,
hs = 1 ,
negative = 0 ,
cbow_mean = 0 ,
iter = 1 ,
null_word = 0 ,
trim_rule = None ,
sorted_vocab = 1 )
html = word_similarity_explorer_gensim ( corpus ,
category = 'democrat' ,
category_name = 'Democratic' ,
not_category_name = 'Republican' ,
target_term = 'jobs' ,
minimum_term_frequency = 5 ,
pmi_threshold_coefficient = 4 ,
width_in_pixels = 1000 ,
metadata = convention_df [ 'speaker' ],
word2vec = Word2VecFromParsedCorpus ( corpus , model ). train (),
max_p_val = 0.05 ,
save_svg_button = True )
open ( './demo_gensim_similarity.html' , 'wb' ). write ( html . encode ( 'utf-8' ))How Democrats and Republicans talked differently about "jobs" in their 2012 convention speeches.
We can use Scattertext to visualize alternative types of word scores, and ensure that 0 scores are greyed out. Use the sparse_explroer function to acomplish this, and see its source code for more details.
>>> from sklearn.linear_model import Lasso
>>> from scattertext import sparse_explorer
>>> html = sparse_explorer(corpus,
... category='democrat',
... category_name='Democratic',
... not_category_name='Republican',
... scores = corpus.get_regression_coefs('democrat', Lasso(max_iter=10000)),
... minimum_term_frequency=5,
... pmi_threshold_coefficient=4,
... width_in_pixels=1000,
... metadata=convention_df['speaker'])
>>> open('./Convention-Visualization-Sparse.html', 'wb').write(html.encode('utf-8'))
You can also use custom term positions and axis labels. For example, you can base terms' y-axis positions on a regression coefficient and their x-axis on term frequency and label the axes accordingly. The one catch is that axis positions must be scaled between 0 and 1.
First, let's define two scaling functions: scale to project positive values to [0,1], and zero_centered_scale project real values to [0,1], with negative values always <0.5, and positive values always >0.5.
>>> def scale(ar):
... return (ar - ar.min()) / (ar.max() - ar.min())
...
>>> def zero_centered_scale(ar):
... ar[ar > 0] = scale(ar[ar > 0])
... ar[ar < 0] = -scale(-ar[ar < 0])
... return (ar + 1) / 2.
Next, let's compute and scale term frequencies and L2-penalized regression coefficients. We'll hang on to the original coefficients and allow users to view them by mousing over terms.
>>> from sklearn.linear_model import LogisticRegression
>>> import numpy as np
>>>
>>> frequencies_scaled = scale(np.log(term_freq_df.sum(axis=1).values))
>>> scores = corpus.get_logreg_coefs('democrat',
... LogisticRegression(penalty='l2', C=10, max_iter=10000, n_jobs=-1))
>>> scores_scaled = zero_centered_scale(scores)
Finally, we can write the visualization. Note the use of the x_coords and y_coords parameters to store the respective coordinates, the scores and sort_by_dist arguments to register the original coefficients and use them to rank the terms in the right-hand list, and the x_label and y_label arguments to label axes.
>>> html = produce_scattertext_explorer(corpus,
... category='democrat',
... category_name='Democratic',
... not_category_name='Republican',
... minimum_term_frequency=5,
... pmi_threshold_coefficient=4,
... width_in_pixels=1000,
... x_coords=frequencies_scaled,
... y_coords=scores_scaled,
... scores=scores,
... sort_by_dist=False,
... metadata=convention_df['speaker'],
... x_label='Log frequency',
... y_label='L2-penalized logistic regression coef')
>>> open('demo_custom_coordinates.html', 'wb').write(html.encode('utf-8'))
The Emoji analysis capability displays a chart of the category-specific distribution of Emoji. Let's look at a new corpus, a set of tweets. We'll build a visualization showing how men and women use emoji differently.
Note: the following example is implemented in demo_emoji.py .
First, we'll load the dataset and parse it using NLTK's tweet tokenizer. Note, install NLTK before running this example. It will take some time for the dataset to download.
import nltk , urllib . request , io , agefromname , zipfile
import scattertext as st
import pandas as pd
with zipfile . ZipFile ( io . BytesIO ( urllib . request . urlopen (
'http://followthehashtag.com/content/uploads/USA-Geolocated-tweets-free-dataset-Followthehashtag.zip'
). read ())) as zf :
df = pd . read_excel ( zf . open ( 'dashboard_x_usa_x_filter_nativeretweets.xlsx' ))
nlp = st . tweet_tokenzier_factory ( nltk . tokenize . TweetTokenizer ())
df [ 'parse' ] = df [ 'Tweet content' ]. apply ( nlp )
df . iloc [ 0 ]
'''
Tweet Id 721318437075685382
Date 2016-04-16
Hour 12:44
User Name Bill Schulhoff
Nickname BillSchulhoff
Bio Husband,Dad,GrandDad,Ordained Minister, Umpire...
Tweet content Wind 3.2 mph NNE. Barometer 30.20 in, Rising s...
Favs NaN
RTs NaN
Latitude 40.7603
Longitude -72.9547
Country US
Place (as appears on Bio) East Patchogue, NY
Profile picture http://pbs.twimg.com/profile_images/3788000007...
Followers 386
Following 705
Listed 24
Tweet language (ISO 639-1) en
Tweet Url http://www.twitter.com/BillSchulhoff/status/72...
parse Wind 3.2 mph NNE. Barometer 30.20 in, Rising s...
Name: 0, dtype: object
''' Next, we'll use the AgeFromName package to find the probabilities of the gender of each user given their first name. First, we'll find a dataframe indexed on first names that contains the probability that each someone with that first name is male ( male_prob ).
male_prob = agefromname . AgeFromName (). get_all_name_male_prob ()
male_prob . iloc [ 0 ]
'''
hi 1.00000
lo 0.95741
prob 1.00000
Name: aaban, dtype: float64
''' Next, we'll extract the first names of each user, and use the male_prob data frame to find users whose names indicate there is at least a 90% chance they are either male or female, label those users, and create new data frame df_mf with only those users.
df [ 'first_name' ] = df [ 'User Name' ]. apply ( lambda x : x . split ()[ 0 ]. lower () if type ( x ) == str and len ( x . split ()) > 0 else x )
df_aug = pd . merge ( df , male_prob , left_on = 'first_name' , right_index = True )
df_aug [ 'gender' ] = df_aug [ 'prob' ]. apply ( lambda x : 'm' if x > 0.9 else 'f' if x < 0.1 else '?' )
df_mf = df_aug [ df_aug [ 'gender' ]. isin ([ 'm' , 'f' ])] The key to this analysis is to construct a corpus using only the emoji extractor st.FeatsFromSpacyDocOnlyEmoji which builds a corpus only from emoji and not from anything else.
corpus = st . CorpusFromParsedDocuments (
df_mf ,
parsed_col = 'parse' ,
category_col = 'gender' ,
feats_from_spacy_doc = st . FeatsFromSpacyDocOnlyEmoji ()
). build () Next, we'll run this through a standard produce_scattertext_explorer visualization generation.
html = st . produce_scattertext_explorer (
corpus ,
category = 'f' ,
category_name = 'Female' ,
not_category_name = 'Male' ,
use_full_doc = True ,
term_ranker = st . OncePerDocFrequencyRanker ,
sort_by_dist = False ,
metadata = ( df_mf [ 'User Name' ]
+ ' (@' + df_mf [ 'Nickname' ] + ') '
+ df_mf [ 'Date' ]. astype ( str )),
width_in_pixels = 1000
)
open ( "EmojiGender.html" , 'wb' ). write ( html . encode ( 'utf-8' ))SentencePiece tokenization is a subword tokenization technique which relies on a language-model to produce optimized tokenization. It has been used in large, transformer-based contextual language models.
Ensure to run $ pip install sentencepiece before running this example.
First, let's load the political convention data set as normal.
import tempfile
import re
import scattertext as st
convention_df = st . SampleCorpora . ConventionData2012 . get_data ()
convention_df [ 'parse' ] = convention_df . text . apply ( st . whitespace_nlp_with_sentences ) Next, let's train a SentencePiece tokenizer based on this data. The train_sentence_piece_tokenizer function trains a SentencePieceProcessor on the data set and returns it. You can of course use any SentencePieceProcessor.
def train_sentence_piece_tokenizer ( documents , vocab_size ):
'''
:param documents: list-like, a list of str documents
:vocab_size int: the size of the vocabulary to output
:return sentencepiece.SentencePieceProcessor
'''
import sentencepiece as spm
sp = None
with tempfile . NamedTemporaryFile ( delete = True ) as tempf :
with tempfile . NamedTemporaryFile ( delete = True ) as tempm :
tempf . write (( ' n ' . join ( documents )). encode ())
spm . SentencePieceTrainer . Train (
'--input=%s --model_prefix=%s --vocab_size=%s' % ( tempf . name , tempm . name , vocab_size )
)
sp = spm . SentencePieceProcessor ()
sp . load ( tempm . name + '.model' )
return sp
sp = train_sentence_piece_tokenizer ( convention_df . text . values , vocab_size = 2000 ) Next, let's add the SentencePiece tokens as metadata when creating our corpus. In order to do this, pass a FeatsFromSentencePiece instance into the feats_from_spacy_doc parameter. Pass the SentencePieceProcessor into the constructor.
corpus = st . CorpusFromParsedDocuments ( convention_df ,
parsed_col = 'parse' ,
category_col = 'party' ,
feats_from_spacy_doc = st . FeatsFromSentencePiece ( sp )). build ()Now we can create the SentencePiece token scatter plot.
html = st . produce_scattertext_explorer (
corpus ,
category = 'democrat' ,
category_name = 'Democratic' ,
not_category_name = 'Republican' ,
sort_by_dist = False ,
metadata = convention_df [ 'party' ] + ': ' + convention_df [ 'speaker' ],
term_scorer = st . RankDifference (),
transform = st . Scalers . dense_rank ,
use_non_text_features = True ,
use_full_doc = True ,
)Suppose you'd like to audit or better understand weights or importances given to bag-of-words features by a classifier.
It's easy to use Scattertext to do, if you use a Scikit-learn-style classifier.
For example the Lighting package makes available high-performance linear classifiers which are have Scikit-compatible interfaces.
First, let's import sklearn 's text feature extraction classes, the 20 Newsgroup corpus, Lightning's Primal Coordinate Descent classifier, and Scattertext. We'll also fetch the training portion of the Newsgroup corpus.
from lightning . classification import CDClassifier
from sklearn . datasets import fetch_20newsgroups
from sklearn . feature_extraction . text import CountVectorizer , TfidfVectorizer
import scattertext as st
newsgroups_train = fetch_20newsgroups (
subset = 'train' ,
remove = ( 'headers' , 'footers' , 'quotes' )
)Next, we'll tokenize our corpus twice. Once into tfidf features which will be used to train the classifier, an another time into ngram counts that will be used by Scattertext. It's important that both vectorizers share the same vocabulary, since we'll need to apply the weight vector from the model onto our Scattertext Corpus.
vectorizer = TfidfVectorizer ()
tfidf_X = vectorizer . fit_transform ( newsgroups_train . data )
count_vectorizer = CountVectorizer ( vocabulary = vectorizer . vocabulary_ ) Next, we use the CorpusFromScikit factory to build a Scattertext Corpus object. Ensure the X parameter is a document-by-feature matrix. The argument to the y parameter is an array of class labels. Each label is an integer representing a different news group. We the feature_vocabulary is the vocabulary used by the vectorizers. The category_names are a list of the 20 newsgroup names which as a class-label list. The raw_texts is a list of the text of newsgroup texts.
corpus = st . CorpusFromScikit (
X = count_vectorizer . fit_transform ( newsgroups_train . data ),
y = newsgroups_train . target ,
feature_vocabulary = vectorizer . vocabulary_ ,
category_names = newsgroups_train . target_names ,
raw_texts = newsgroups_train . data
). build () Now, we can train the model on tfidf_X and the categoricla response variable, and capture feature weights for category 0 ("alt.atheism").
clf = CDClassifier ( penalty = "l1/l2" ,
loss = "squared_hinge" ,
multiclass = True ,
max_iter = 20 ,
alpha = 1e-4 ,
C = 1.0 / tfidf_X . shape [ 0 ],
tol = 1e-3 )
clf . fit ( tfidf_X , newsgroups_train . target )
term_scores = clf . coef_ [ 0 ]Finally, we can create a Scattertext plot. We'll use the Monroe-style visualization, and automatically select around 4000 terms that encompass the set of frequent terms, terms with high absolute scores, and terms that are characteristic of the corpus.
html = st . produce_frequency_explorer (
corpus ,
'alt.atheism' ,
scores = term_scores ,
use_term_significance = False ,
terms_to_include = st . AutoTermSelector . get_selected_terms ( corpus , term_scores , 4000 ),
metadata = [ '/' . join ( fn . split ( '/' )[ - 2 :]) for fn in newsgroups_train . filenames ]
)Let's take a look at the performance of the classifier:
newsgroups_test = fetch_20newsgroups ( subset = 'test' ,
remove = ( 'headers' , 'footers' , 'quotes' ))
X_test = vectorizer . transform ( newsgroups_test . data )
pred = clf . predict ( X_test )
f1 = f1_score ( pred , newsgroups_test . target , average = 'micro' )
print ( "Microaveraged F1 score" , f1 )Microaveraged F1 score 0.662108337759. Not bad over a ~0.05 baseline.
Please see Signo for an introduction to semiotic squares.
Some variants of the semiotic square-creator are can be seen in this notebook, which studies words and phrases in headlines that had low or high Facebook engagement and were published by either BuzzFeed or the New York Times: [http://nbviewer.jupyter.org/github/JasonKessler/PuPPyTalk/blob/master/notebooks/Explore-Headlines.ipynb]
The idea behind the semiotic square is to express the relationship between two opposing concepts and concepts things within a larger domain of a discourse. Examples of opposed concepts life or death, male or female, or, in our example, positive or negative sentiment. Semiotics squares are comprised of four "corners": the upper two corners are the opposing concepts, while the bottom corners are the negation of the concepts.
Circumscribing the negation of a concept involves finding everything in the domain of discourse that isn't associated with the concept. For example, in the life-death opposition, one can consider the universe of discourse to be all animate beings, real and hypothetical. The not-alive category will cover dead things, but also hypothetical entities like fictional characters or sentient AIs.
In building lexicalized semiotic squares, we consider concepts to be documents labeled in a corpus. Documents, in this setting, can belong to one of three categories: two labels corresponding to the opposing concepts, a neutral category, indicating a document is in the same domain as the opposition, but cannot fall into one of opposing categories.
In the example below positive and negative movie reviews are treated as the opposing categories, while plot descriptions of the same movies are treated as the neutral category.
Terms associated with one of the two opposing categories (relative only to the other) are listed as being associated with that category. Terms associated with a netural category (eg, not positive) are terms which are associated with the disjunction of the opposite category and the neutral category. For example, not-positive terms are those most associated with the set of negative reviews and plot descriptions vs. positive reviews.
Common terms among adjacent corners of the square are also listed.
An HTML-rendered square is accompanied by a scatter plot. Points on the plot are terms. The x-axis is the Z-score of the association to one of the opposed concepts. The y-axis is the Z-score how associated a term is with the neutral set of documents relative to the opposed set. A point's red-blue color indicate the term's opposed-association, while the more desaturated a term is, the more it is associated with the neutral set of documents.
Update to version 2.2: terms are colored by their nearest semiotic categories across the eight corresponding radial sectors.
import scattertext as st
movie_df = st . SampleCorpora . RottenTomatoes . get_data ()
movie_df . category = movie_df . category . apply
( lambda x : { 'rotten' : 'Negative' , 'fresh' : 'Positive' , 'plot' : 'Plot' }[ x ])
corpus = st . CorpusFromPandas (
movie_df ,
category_col = 'category' ,
text_col = 'text' ,
nlp = st . whitespace_nlp_with_sentences
). build (). get_unigram_corpus ()
semiotic_square = st . SemioticSquare (
corpus ,
category_a = 'Positive' ,
category_b = 'Negative' ,
neutral_categories = [ 'Plot' ],
scorer = st . RankDifference (),
labels = { 'not_a_and_not_b' : 'Plot Descriptions' , 'a_and_b' : 'Reviews' }
)
html = st . produce_semiotic_square_explorer ( semiotic_square ,
category_name = 'Positive' ,
not_category_name = 'Negative' ,
x_label = 'Fresh-Rotten' ,
y_label = 'Plot-Review' ,
neutral_category_name = 'Plot Description' ,
metadata = movie_df [ 'movie_name' ])There are a number of other types of semiotic square construction functions. Again, please see https://nbviewer.org/github/JasonKessler/PuPPyTalk/blob/master/notebooks/Explore-Headlines.ipynb for an overview of these.
A frequently requested feature of Scattertext has been the ability to visualize topic models. While this capability has existed in some forms (eg, the Empath visualization), I've finally gotten around to implementing a concise API for such a visualization. There are three main ways to visualize topic models using Scattertext. The first is the simplest: manually entering topic models and visualizing them. The second uses a Scikit-Learn pipeline to produce the topic models for visualization. The third is a novel topic modeling technique, based on finding terms similar to a custom set of seed terms.
If you have already created a topic model, simply structure it as a dictionary. This dictionary is keyed on string which serve as topic titles and are displayed in the main scatterplot. The values are lists of words that belong to that topic. The words that are in each topic list are bolded when they appear in a snippet.
Note that currently, there is no support for keyword scores.
For example, one might manually the following topic models to explore in the Convention corpus:
topic_model = {
'money' : [ 'money' , 'bank' , 'banks' , 'finances' , 'financial' , 'loan' , 'dollars' , 'income' ],
'jobs' : [ 'jobs' , 'workers' , 'labor' , 'employment' , 'worker' , 'employee' , 'job' ],
'patriotic' : [ 'america' , 'country' , 'flag' , 'americans' , 'patriotism' , 'patriotic' ],
'family' : [ 'mother' , 'father' , 'mom' , 'dad' , 'sister' , 'brother' , 'grandfather' , 'grandmother' , 'son' , 'daughter' ]
} We can use the FeatsFromTopicModel class to transform this topic model into one which can be visualized using Scattertext. This is used just like any other feature builder, and we pass the topic model object into produce_scattertext_explorer .
import scattertext as st
topic_feature_builder = st.FeatsFromTopicModel(topic_model)
topic_corpus = st.CorpusFromParsedDocuments(
convention_df,
category_col='party',
parsed_col='parse',
feats_from_spacy_doc=topic_feature_builder
).build()
html = st.produce_scattertext_explorer(
topic_corpus,
category='democrat',
category_name='Democratic',
not_category_name='Republican',
width_in_pixels=1000,
metadata=convention_df['speaker'],
use_non_text_features=True,
use_full_doc=True,
pmi_threshold_coefficient=0,
topic_model_term_lists=topic_feature_builder.get_top_model_term_lists()
)
Since topic modeling using document-level coocurence generally produces poor results, I've added a SentencesForTopicModeling class which allows clusterting by coocurence at the sentence-level. It requires a ParsedCorpus object to be passed to its constructor, and creates a term-sentence matrix internally.
Next, you can create a topic model dictionary like the one above by passing in a Scikit-Learn clustering or dimensionality reduction pipeline. The only constraint is the last transformer in the pipeline must populate a components_ attribute.
The num_topics_per_term attribute specifies how many terms should be added to a list.
In the following example, we'll use NMF to cluster a stoplisted, unigram corpus of documents, and use the topic model dictionary to create a FeatsFromTopicModel , just like before.
Note that in produce_scattertext_explorer , we make the topic_model_preview_size 20 in order to show a preview of the first 20 terms in the topic in the snippet view as opposed to the default 10.
from sklearn . decomposition import NMF
from sklearn . feature_extraction . text import TfidfTransformer
from sklearn . pipeline import Pipeline
convention_df = st . SampleCorpora . ConventionData2012 . get_data ()
convention_df [ 'parse' ] = convention_df [ 'text' ]. apply ( st . whitespace_nlp_with_sentences )
unigram_corpus = ( st . CorpusFromParsedDocuments ( convention_df ,
category_col = 'party' ,
parsed_col = 'parse' )
. build (). get_stoplisted_unigram_corpus ())
topic_model = st . SentencesForTopicModeling ( unigram_corpus ). get_topics_from_model (
Pipeline ([
( 'tfidf' , TfidfTransformer ( sublinear_tf = True )),
( 'nmf' , ( NMF ( n_components = 100 , alpha = .1 , l1_ratio = .5 , random_state = 0 )))
]),
num_terms_per_topic = 20
)
topic_feature_builder = st . FeatsFromTopicModel ( topic_model )
topic_corpus = st . CorpusFromParsedDocuments (
convention_df ,
category_col = 'party' ,
parsed_col = 'parse' ,
feats_from_spacy_doc = topic_feature_builder
). build ()
html = st . produce_scattertext_explorer (
topic_corpus ,
category = 'democrat' ,
category_name = 'Democratic' ,
not_category_name = 'Republican' ,
width_in_pixels = 1000 ,
metadata = convention_df [ 'speaker' ],
use_non_text_features = True ,
use_full_doc = True ,
pmi_threshold_coefficient = 0 ,
topic_model_term_lists = topic_feature_builder . get_top_model_term_lists (),
topic_model_preview_size = 20
)A surprisingly easy way to generate good topic models is to use a term scoring formula to find words that are associated with sentences where a seed word occurs vs. where one doesn't occur.
Given a custom term list, the SentencesForTopicModeling.get_topics_from_terms will generate a series of topics. Note that the dense rank difference ( RankDifference ) works particularly well for this task, and is the default parameter.
term_list = [ 'obama' , 'romney' , 'democrats' , 'republicans' , 'health' , 'military' , 'taxes' ,
'education' , 'olympics' , 'auto' , 'iraq' , 'iran' , 'israel' ]
unigram_corpus = ( st . CorpusFromParsedDocuments ( convention_df ,
category_col = 'party' ,
parsed_col = 'parse' )
. build (). get_stoplisted_unigram_corpus ())
topic_model = ( st . SentencesForTopicModeling ( unigram_corpus )
. get_topics_from_terms ( term_list ,
scorer = st . RankDifference (),
num_terms_per_topic = 20 ))
topic_feature_builder = st . FeatsFromTopicModel ( topic_model )
# The remaining code is identical to two examples above. See demo_word_list_topic_model.py
# for the complete example. Scattertext makes it easy to create word-similarity plots using projections of word embeddings as the x and y-axes. In the example below, we create a stop-listed Corpus with only unigram terms. The produce_projection_explorer function by uses Gensim to create word embeddings and then projects them to two dimentions using Uniform Manifold Approximation and Projection (UMAP).
UMAP is chosen over T-SNE because it can employ the cosine similarity between two word vectors instead of just the euclidean distance.
convention_df = st . SampleCorpora . ConventionData2012 . get_data ()
convention_df [ 'parse' ] = convention_df [ 'text' ]. apply ( st . whitespace_nlp_with_sentences )
corpus = ( st . CorpusFromParsedDocuments ( convention_df , category_col = 'party' , parsed_col = 'parse' )
. build (). get_stoplisted_unigram_corpus ())
html = st . produce_projection_explorer ( corpus , category = 'democrat' , category_name = 'Democratic' ,
not_category_name = 'Republican' , metadata = convention_df . speaker ) In order to use custom word embedding functions or projection functions, pass models into the word2vec_model and projection_model parameters. In order to use T-SNE, for example, use projection_model=sklearn.manifold.TSNE() .
import umap
from gensim . models . word2vec import Word2Vec
html = st . produce_projection_explorer ( corpus ,
word2vec_model = Word2Vec ( size = 100 , window = 5 , min_count = 10 , workers = 4 ),
projection_model = umap . UMAP ( min_dist = 0.5 , metric = 'cosine' ),
category = 'democrat' ,
category_name = 'Democratic' ,
not_category_name = 'Republican' ,
metadata = convention_df . speaker ) Term positions can also be determined by the positions of terms according to the output of principal component analysis, and produce_projection_explorer also supports this functionality. We'll look at how axes transformations ("scalers" in Scattertext terminology) can make it easier to inspect the output of PCA.
We'll use the 2012 Conventions corpus for these visualizations. Only unigrams occurring in at least three documents will be considered.
>>> convention_df = st.SampleCorpora.ConventionData2012.get_data()
>>> convention_df['parse'] = convention_df['text'].apply(st.whitespace_nlp_with_sentences)
>>> corpus = (st.CorpusFromParsedDocuments(convention_df,
... category_col='party',
... parsed_col='parse')
... .build()
... .get_stoplisted_unigram_corpus()
... .remove_infrequent_words(minimum_term_count=3, term_ranker=st.OncePerDocFrequencyRanker))
Next, we use scikit-learn's tf-idf transformer to find very simple, sparse embeddings for all of these words. Since, we input a #docs x #terms matrix to the transformer, we can transpose it to get a proper term-embeddings matrix, where each row corresponds to a term, and the columns correspond to document-specific tf-idf scores.
>>> from sklearn.feature_extraction.text import TfidfTransformer
>>> embeddings = TfidfTransformer().fit_transform(corpus.get_term_doc_mat())
>>> embeddings.shape
(189, 2159)
>>> corpus.get_num_docs(), corpus.get_num_terms()
(189, 2159)
>>> embeddings = embeddings.T
>>> embeddings.shape
(2159, 189)
Given these spare embeddings, we can apply sparse singular value decomposition to extract three factors. SVD outputs factorizes the term embeddings matrix into three matrices, U, Σ, and VT. Importantly, the matrix U provides the singular values for each term, and VT provides them for each document, and Σ is a vector of the singular values.
>>> from scipy.sparse.linalg import svds
>>> U, S, VT = svds(embeddings, k = 3, maxiter=20000, which='LM')
>>> U.shape
(2159, 3)
>>> S.shape
(3,)
>>> VT.shape
(3, 189)
We'll look at the first two singular values, plotting each term such that the x-axis position is the first singular value, and the y-axis term is the second. To do this, we make a "projection" data frame, where the x and y columns store the first two singular values, and key the data frame on each term. This controls the term positions on the chart.
>>> x_dim = 0; y_dim = 1;
>>> projection = pd.DataFrame({'term':corpus.get_terms(),
... 'x':U.T[x_dim],
... 'y':U.T[y_dim]}).set_index('term')
We'll use the produce_pca_explorer function to visualize these. Note we include the projection object, and specify which singular values were used for x and y ( x_dim and y_dim ) so we they can be labeled in the interactive visualization.
html = st.produce_pca_explorer(corpus,
category='democrat',
category_name='Democratic',
not_category_name='Republican',
projection=projection,
metadata=convention_df['speaker'],
width_in_pixels=1000,
x_dim=x_dim,
y_dim=y_dim)
Click for an interactive visualization.
We can easily re-scale the plot in order to make more efficient use of space. For example, passing in scaler=scale_neg_1_to_1_with_zero_mean will make all four quadrants take equal area.
html = st.produce_pca_explorer(corpus,
category='democrat',
category_name='Democratic',
not_category_name='Republican',
projection=projection,
metadata=convention_df['speaker'],
width_in_pixels=1000,
scaler=st.scale_neg_1_to_1_with_zero_mean,
x_dim=x_dim,
y_dim=y_dim)
Click for an interactive visualization.
To export the content of a scattertext explorer object (ScattertextStructure) to matplotlib you can use produce_scattertext_pyplot . The function returns a matplotlib.figure.Figure object which can be visualized using plt.show or plt.savefig as in the example below.
Note that installation of textalloc==0.0.3 and matplotlib>=3.6.0 is required before running this.
convention_df = st.SampleCorpora.ConventionData2012.get_data().assign(
parse = lambda df: df.text.apply(st.whitespace_nlp_with_sentences)
)
corpus = st.CorpusFromParsedDocuments(convention_df, category_col='party', parsed_col='parse').build()
scattertext_structure = st.produce_scattertext_explorer(
corpus,
category='democrat',
category_name='Democratic',
not_category_name='Republican',
minimum_term_frequency=5,
pmi_threshold_coefficient=8,
width_in_pixels=1000,
return_scatterplot_structure=True,
)
fig = st.produce_scattertext_pyplot(scattertext_structure)
fig.savefig('pyplot_export.png', format='png')
[]
Please see the examples in the PyData 2017 Tutorial on Scattertext.
Cozy: The Collection Synthesizer (Loncaric 2016) was used to help determine which terms could be labeled without overlapping a circle or another label. It automatically built a data structure to efficiently store and query the locations of each circle and labeled term.
The script to build rectangle-holder.js was
fields ax1 : long, ay1 : long, ax2 : long, ay2 : long
assume ax1 < ax2 and ay1 < ay2
query findMatchingRectangles(bx1 : long, by1 : long, bx2 : long, by2 : long)
assume bx1 < bx2 and by1 < by2
ax1 < bx2 and ax2 > bx1 and ay1 < by2 and ay2 > by1
And it was called using
$ python2.7 src/main.py <script file name> --enable-volume-trees
--js-class RectangleHolder --enable-hamt --enable-arrays --js rectangle_holder.js
Adding in code to ensure that term statistics will show up even if no documents are present in visualization.
Better axis labeling (see demo_axis_crossbars_and_labels.py).
Pytextrank compatibility
Ensuring Pandas 1.0 compatibility fixing Issue #51 and scikit-learn stopwords import issue in #49.
AssociationCompactorByRank , TermCategoryRanker . terms_to_show parameter use_categories_as_metadata_and_replace_terms to TermDocMatrix .get_metadata_doc_count_df and get_metadata_count_mat to TermDocMatrix produce_pairplot ScatterChart.hide_terms(terms: iter[str]) which enables selected terms to be hidden from the chart.ScatterChartData.score_transform to specify the function which can change an original score into a value between 0 and 1 used for term coloring. alternative_term_func to produce_scattertext_explorer which allows you to inject a function that activates when a term is clicked.HedgesG , and unbiased version of Cohen's d which is a subclass of CohensD .frequency_transform parameter to produce_frequency_explorer . This defaults to a log transform, but allows you to use any way your heart desires to order terms along the x-axis. show_category_headings=True to produce_scattertext_explorer . Setting this to False suppresses the list of categories which will be displayed in the term context area.div_name argument to produce_scattertext_explorer and name-spaced important divs and classes by div_name in HTML templates and Javascript.show_cross_axes=True to produce_scattertext_explorer . Setting this to False prevents the cross axes from being displayed if show_axes is True .TermDocMatrix.get_metadata_freq_df now accepts the label_append argument which by default adds ' freq' to the end of each column.TermDocMatrix.get_num_cateogires returns the number of categories in a term-document matrix. Added the following methods:
TermDocMatrixWithoutCategories.get_num_metadataTermDocMatrix.use_metadata_as_categoriesunified_context argument in produce_scattertext_explorer lists all contexts in a single column. This let's you see snippets organized by multiple categories in a single column. See demo_unified_context.py for an example. Added a series of objects to handle uncategorized corpora. Added section on Document-Based Scatterplots, and the add_doc_names_as_metadata function. CategoryColorAssigner was also added to assign colors to a qualitative categories.
A number of new term scoring approaches including RelativeEntropy (a direct implementation of Frankhauser et al. ( 2014)), and ZScores and implementation of the Z-Score model used in Frankhauser et al.
TermDocMatrix.get_metadata_freq_df() returns a metadata-doc corpus.
CorpusBasedTermScorer.set_ranker allows you to use a different term ranker when finding corpus-based scores. This not only lets these scorers with metadata, but also allows you to integrate once-per-document counts.
Fixed produce_projection_explorer such that it can work with a predefined set of term embeddings. This can allow, for example, the easy exploration of one hot-encoded term embeddings in addition to arbitrary lower-dimensional embeddings.
Added add_metadata to TermDocMatrix in order to inject meta data after a TermDocMatrix object has been created.
Made sure tooltip never started above the top of the web page.
Added DomainCompactor .
Fixed bug #31, enabling context to show when metadata value is clicked.
Enabled display of terms in topic models in explorer, along with the the display of customized topic models. Please see Visualizing topic models for an overview of the additions.
Removed pkg_resources from Phrasemachine, corrected demo_phrase_machine.py
Now compatible with Gensim 3.4.0.
Added characteristic explorer, produce_characteristic_explorer , to plot terms with their characteristic scores on the x-axis and their class-association scores on the y-axis. See Ordering Terms by Corpus Characteristicness for more details.
Added TermCategoryFrequencies in response to Issue 23. Please see Visualizing differences based on only term frequencies for more details.
Added x_axis_labels and y_axis_labels parameters to produce_scattertext_explorer . These let you include evenly-spaced string axis labels on the chart, as opposed to just "Low", "Medium" and "High". These rely on d3's ticks function, which can behave unpredictable. Caveat usor.
Semiotic Squares now look better, and have customizable labels.
Incorporated the General Inquirer lexicon.仅供非商业用途。 The lexicon is downloaded from their homepage at the start of each use. See demo_general_inquierer.py .
Incorporated Phrasemachine from AbeHandler (Handler et al. 2016). For the license, please see PhraseMachineLicense.txt . For an example, please see demo_phrase_machine.py .
Added CompactTerms for removing redundant and infrequent terms from term document matrices. These occur if a word or phrase is always part of a larger phrase; the shorter phrase is considered redundant and removed from the corpus. See demo_phrase_machine.py for an example.
Added FourSquare , a pattern that allows for the creation of a semiotic square with separate categories for each corner. Please see demo_four_square.py for an early example.
Finally, added a way to easily perform T-SNE-style visualizations on a categorized corpus. This uses, by default, the umap-learn package. Please see demo_tsne_style.py.
Fixed to ScaledFScorePresets(one_to_neg_one=True) , added UnigramsFromSpacyDoc .
Now, when using CorpusFromPandas , a CorpusDF object is returned, instead of a Corpus object. This new type of object keeps a reference to the source data frame, and returns it via the CorpusDF.get_df() method.
The factory CorpusFromFeatureDict was added. It allows you to directly specify term counts and metadata item counts within the dataframe. Please see test_corpusFromFeatureDict.py for an example.
Added a very semiotic square creator.
The idea to build a semiotic square that contrasts two categories in a Term Document Matrix while using other categories as neutral categories.
See Creating semiotic squares for an overview on how to use this functionality and semiotic squares.
Added a parameter to disable the display of the top-terms sidebar, eg, produce_scattertext_explorer(..., show_top_terms=False, ...) .
An interface to part of the subjectivity/sentiment dataset from Bo Pang and Lillian Lee. ``A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts''. ACL. 2004. See SampleCorpora.RottenTomatoes .
Fixed bug that caused tooltip placement to be off after scrolling.
Made category_name and not_category_name optional in produce_scattertext_explorer etc.
Created the ability to customize tooltips via the get_tooltip_content argument to produce_scattertext_explorer etc., control axes labels via x_axis_values and y_axis_values . The color_func parameter is a Javascript function to control color of a point. Function takes a parameter which is a dictionary entry produced by ScatterChartExplorer.to_dict and returns a string.
Integration with Scikit-Learn's text-analysis pipeline led the creation of the CorpusFromScikit and TermDocMatrixFromScikit classes.
The AutoTermSelector class to automatically suggest terms to appear in the visualization.
This can make it easier to show large data sets, and remove fiddling with the various minimum term frequency parameters.
For an example of how to use CorpusFromScikit and AutoTermSelector , please see demo_sklearn.py
Also, I updated the library and examples to be compatible with spaCy 2.
Fixed bug when processing single-word documents, and set the default beta to 2.
Added produce_frequency_explorer function, and adding the PEP 369-compliant __version__ attribute as mentioned in #19. Fixed bug when creating visualizations with more than two possible categories. Now, by default, category names will not be title-cased in the visualization, but will retain their original case.
If you'd still like to do this this, use ScatterChart (or a descendant).to_dict(..., title_case_names=True) . Fixed DocsAndLabelsFromCorpus for Py 2 compatibility.
Fixed bugs in chinese_nlp when jieba has already been imported and in p-value computation when performing log-odds-ratio w/ prior scoring.
Added demo for performing a Monroe et. al (2008) style visualization of log-odds-ratio scores in demo_log_odds_ratio_prior.py .
Breaking change: pmi_filter_thresold has been replaced with pmi_threshold_coefficient .
Added Emoji and Tweet analysis. See Emoji analysis.
Characteristic terms falls back ot "Most frequent" if no terms used in the chart are present in the background corpus.
Fixed top-term calculation for custom scores.
Set scaled f-score's default beta to 0.5.
Added --spacy_language_model argument to the CLI.
Added the alternative_text_field option in produce_scattertext_explorer to show an alternative text field when showing contexts in the interactive HTML visualization.
Updated ParsedCorpus.get_unigram_corpus to allow for continued alternative_text_field functionality.
Added ability to for Scattertext to use noun chunks instead of unigrams and bigrams through the FeatsFromSpacyDocOnlyNounChunks class. In order to use it, run your favorite Corpus or TermDocMatrix factory, and pass in an instance of the class as a parameter:
st.CorpusFromParsedDocuments(..., feats_from_spacy_doc=st.FeatsFromSpacyDocOnlyNounChunks())
Fixed a bug in corpus construction that occurs when the last document has no features.
Now you don't have to install tinysegmenter to use Scattertext. But you need to install it if you want to parse Japanese. This caused a problem when Scattertext was being installed on Windows.
Added TermDocMatrix.get_corner_score , giving an improved version of the Rudder Score. Exposing whitespace_nlp_with_sentences . It's a lightweight bad regex sentence splitter built a top a bad regex tokenizer that somewhat apes spaCy's API. Use it if you don't have spaCy and the English model downloaded or if you care more about memory footprint and speed than accuracy.
It's not compatible with word_similarity_explorer but is compatible with `word_similarity_explorer_gensim'.
Tweaked scaled f-score normalization.
Fixed Javascript bug when clicking on '$'.
Fixed bug in Scaled F-Score computations, and changed computation to better score words that are inversely correlated to category.
Added Word2VecFromParsedCorpus to automate training Gensim word vectors from a corpus, and
word_similarity_explorer_gensim to produce the visualization.
See demo_gensim_similarity.py for an example.
Added the d3_url and d3_scale_chromatic_url parameters to produce_scattertext_explorer . This provides a way to manually specify the paths to "d3.js" (ie, the file from "https://cdnjs.cloudflare.com/ajax/libs/d3/4.6.0/d3.min.js") and "d3-scale-chromatic.v1.js" (ie, the file from "https://d3js.org/d3-scale-chromatic.v1.min.js").
This is important if you're getting the error:
Javascript error adding output!
TypeError: d3.scaleLinear is not a function
See your browser Javascript console for more details.
It also lets you use Scattertext if you're serving in an environment with no (or a restricted) external Internet connection.
For example, if "d3.min.js" and "d3-scale-chromatic.v1.min.js" were present in the current working directory, calling the following code would reference them locally instead of the remote Javascript files. See Visualizing term associations for code context.
>>> html = st.produce_scattertext_explorer(corpus,
... category='democrat',
... category_name='Democratic',
... not_category_name='Republican',
... width_in_pixels=1000,
... metadata=convention_df['speaker'],
... d3_url='d3.min.js',
... d3_scale_chromatic_url='d3-scale-chromatic.v1.min.js')
Fixed a bug in 0.0.2.6.0 that transposed default axis labels.
Added a Japanese mode to Scattertext. See demo_japanese.py for an example of how to use Japanese. Please run pip install tinysegmenter to parse Japanese.
Also, the chiense_mode boolean parameter in produce_scattertext_explorer has been renamed to asian_mode .
For example, the output of demo_japanese.py is:
Custom term positions and axis labels. Although not recommended, you can visualize different metrics on each axis in visualizations similar to Monroe et al. (2008)。 Please see Custom term positions for more info.
Enhanced the visualization of query-based categorical differences, aka the word_similarity_explorer function. When run, a plot is produced that contains category associated terms colored in either red or blue hues, and terms not associated with either class colored in greyscale and slightly smaller. The intensity of each color indicates association with the query term.例如:
Some minor bug fixes, and added a minimum_not_category_term_frequency parameter. This fixes a problem with visualizing imbalanced datasets. It sets a minimum number of times a word that does not appear in the target category must appear before it is displayed.
Added TermDocMatrix.remove_entity_tags method to remove entity type tags from the analysis.
Fixed matched snippet not displaying issue #9, and fixed a Python 2 issue in created a visualization using a ParsedCorpus prepared via CorpusFromParsedDocuments , mentioned in the latter part of the issue #8 discussion.
Again, Python 2 is supported in experimental mode only.
Corrected example links on this Readme.
Fixed a bug in Issue 8 where the HTML visualization produced by produce_scattertext_html would fail.
Fixed a couple issues that rendered Scattertext broken in Python 2. Chinese processing still does not work.
Note: Use Python 3.4+ if you can.
Fixed links in Readme, and made regex NLP available in CLI.
Added the command line tool, and fixed a bug related to Empath visualizations.
Ability to see how a particular term is discussed differently between categories through the word_similarity_explorer function.
Specialized mode to view sparse term scores.
Fixed a bug that was caused by repeated values in background unigram counts.
Added true alphabetical term sorting in visualizations.
Added an optional save-as-SVG button.
Addition option of showing characteristic terms (from the full set of documents) being considered. The option ( show_characteristic in produce_scattertext_explorer ) is on by default, but currently unavailable for Chinese. If you know of a good Chinese wordcount list, please let me know. The algorithm used to produce these is F-Score.
See this and the following slide for more details
Added document and word count statistics to main visualization.
Added preliminary support for visualizing Empath (Fast 2016) topics categories instead of emotions. See the tutorial for more information.
Improved term-labeling.
Addition of strip_final_period param to FeatsFromSpacyDoc to deal with spaCy tokenization of all-caps documents that can leave periods at the end of terms.
I've added support for Chinese, including the ChineseNLP class, which uses a RegExp-based sentence splitter and Jieba for word segmentation. To use it, see the demo_chinese.py file. Note that CorpusFromPandas currently does not support ChineseNLP.
In order for the visualization to work, set the asian_mode flag to True in produce_scattertext_explorer .