Tutel
v0.3.2
Tutel Moe:一种优化的Experts实现的混合物,也是第一个并行解决方案,提出了“无质量等值/稀疏/能力/..切换”,以实现具有动态行为的现代训练和推理。
>> Example :
python3 - m torch . distributed . run - - nproc_per_node = 8 - m tutel . examples . bandwidth_test - - size_mb = 256 >> Example for using tensorcore :
python3 - m tutel . examples . helloworld - - dtype = float32
python3 - m tutel . examples . helloworld - - dtype = float32 - - use_tensorcore
python3 - m tutel . examples . helloworld - - dtype = float16
python3 - m tutel . examples . helloworld - - dtype = float16 - - use_tensorcore
>> Example for custom experts :
python3 - m tutel . examples . helloworld_custom_expert - - batch_size = 16
>> Example for NCCL timeout settings :
TUTEL_GLOBAL_TIMEOUT_SEC = 60 python3 - m torch . distributed . run - - nproc_per_node = 8 - m tutel . examples . helloworld - - use_tensorcore >> Example :
# All_to_All_v:
python3 - m torch . distributed . run - - nproc_per_node = 2 - - master_port = 7340 - m tutel . examples . nccl_all_to_all_v
# All_Gather_v:
python3 - m torch . distributed . run - - nproc_per_node = 2 - - master_port = 7340 - m tutel . examples . nccl_all_gather_v
>> How to :
net . batch_all_to_all_v ([ t_x_cuda , t_y_cuda , ..], common_send_counts )
net . batch_all_gather_v ([ t_x_cuda , t_y_cuda , ..]) >> Example ( capacity_factor = 0 for dropless - MoE ):
# Using BatchMatmul:
python3 - m tutel . examples . helloworld - - megablocks_size = 0 - - batch_size = 1 - - num_tokens = 32 - - top = 1 - - eval - - num_local_experts = 128 - - capacity_factor = 0
# Using Megablocks with block_size = 1:
python3 - m tutel . examples . helloworld - - megablocks_size = 1 - - batch_size = 1 - - num_tokens = 32 - - top = 1 - - eval - - num_local_experts = 128 - - capacity_factor = 0
# Using Megablocks with block_size = 2:
python3 - m tutel . examples . helloworld - - megablocks_size = 2 - - batch_size = 1 - - num_tokens = 32 - - top = 1 - - eval - - num_local_experts = 128 - - capacity_factor = 0
>> How to :
self . _moe_layer . forward ( x , .., megablocks_size = 1 ) # Control the switch of megablocks_size (0 for disabled) >> Example :
python3 - m torch . distributed . run - - nproc_per_node = 8 - m tutel . examples . helloworld_switch - - batch_size = 16
>> How to :
self . _moe_layer . forward ( x , .., a2a_ffn_overlap_degree = 2 ) # Control the switch of overlap granularity (1 for no overlapping)
self . _moe_layer . forward ( x , .., adaptive_r = 1 ) # Control the switch of parallelism (0 for DP, 1 for DP + EP, W / E for MP + EP, else for DP + MP + EP)
self . _moe_layer . forward ( x , .., capacity_factor = 1 ) # Control the switch of capacity_volume (positive for padding, negative for no-padding, 0 for dropless)
self . _moe_layer . forward ( x , .., top_k = 1 ) # Control the switch of top_k sparsity >> Example ( suggest enabling 2 DH only at scale , note that the value of - - nproc_per_node MUST equal to total physical GPU counts per node , e . g . 8 for A100x8 ):
python3 - m torch . distributed . run - - nproc_per_node = 8 - m tutel . examples . helloworld - - batch_size = 16 - - use_2dh * Prepare Recommended Pytorch >= 2.0.0 (minimal version == 1.8.0):
# Windows/Linux Pytorch for NVIDIA CUDA >= 11.7:
python3 -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
# Linux Pytorch for AMD ROCm == 5.4.2:
python3 -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.4.2
# Windows/Linux Pytorch for CPU:
python3 -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
* Install Tutel Online:
$ python3 -m pip uninstall tutel -y
$ python3 -m pip install setuptools wheel
$ python3 -m pip install -v -U --no-build-isolation git+https://github.com/microsoft/tutel@main
* Build Tutel from Source:
$ git clone https://github.com/microsoft/tutel --branch main
$ python3 -m pip uninstall tutel -y
$ python3 ./tutel/setup.py install --user
* Quick Test on Single-GPU:
$ python3 -m tutel.examples.helloworld --batch_size=16 # Test Tutel-optimized MoE + manual distribution
$ python3 -m tutel.examples.helloworld_ddp --batch_size=16 # Test Tutel-optimized MoE + Pytorch DDP distribution (requires: Pytorch >= 1.8.0)
$ python3 -m tutel.examples.helloworld_ddp_tutel --batch_size=16 # Test Tutel-optimized MoE + Tutel DDP distribution (ZeRO on optimizors)
$ python3 -m tutel.examples.helloworld_amp --batch_size=16 # Test Tutel-optimized MoE with AMP data type + manual distribution
$ python3 -m tutel.examples.helloworld_custom_expert --batch_size=16 # Test Tutel-optimized MoE + custom defined expert layer
$ python3 -m tutel.examples.helloworld_from_scratch # Test Custom MoE implementation from scratch
$ python3 -m tutel.examples.moe_mnist # Test MoE layer in end-to-end MNIST dataset
$ python3 -m tutel.examples.moe_cifar10 # Test MoE layer in end-to-end CIFAR10 dataset
(If building from source, the following method also works:)
$ python3 ./tutel/examples/helloworld.py --batch_size=16
..
* Run Tutel MoE in Distributed Mode:
(Method A - Torch launcher for `Multi-Node x Multi-GPU`:)
$ ssh <node-ip-0> python3 -m torch.distributed.run --nproc_per_node=8 --nnodes=2 --node_rank=0 --master_addr=<node-ip-0> -m tutel.examples.helloworld --batch_size=16
$ ssh <node-ip-1> python3 -m torch.distributed.run --nproc_per_node=8 --nnodes=2 --node_rank=1 --master_addr=<node-ip-0> -m tutel.examples.helloworld --batch_size=16
(Method B - Tutel launcher for `Multi-Node x Multi-GPU`, requiring package `openmpi-bin`:)
# << Single Node >>
$ mpiexec -bind-to none -host localhost -x LOCAL_SIZE=8 python3 -m tutel.launcher.run -m tutel.examples.helloworld_ddp_tutel --batch_size=16
$ mpiexec -bind-to none -host localhost -x LOCAL_SIZE=8 python3 -m tutel.launcher.run -m tutel.examples.moe_mnist
$ mpiexec -bind-to none -host localhost -x LOCAL_SIZE=8 python3 -m tutel.launcher.run -m tutel.examples.moe_cifar10
...
# << Cross Nodes >>
$ mpiexec -bind-to none -host <node-ip-0>,<node-ip-1>,.. -x MASTER_ADDR=<node-ip-0> -x LOCAL_SIZE=8 python3 -m tutel.launcher.run -m tutel.examples.helloworld --batch_size=16
# << For CPU-based Launch>>
$ mpiexec -bind-to none -host localhost -x LOCAL_SIZE=1 -x OMP_NUM_THREADS=1024 python3 -m tutel.launcher.run -m tutel.examples.helloworld --batch_size=16 --device cpu
文档已移至这里。
# Input Example:
import torch
x = torch.ones([6, 1024], device='cuda:0')
# Create MoE:
from tutel import moe as tutel_moe
moe_layer = tutel_moe.moe_layer(
gate_type={'type': 'top', 'k': 2},
model_dim=x.shape[-1],
experts={
'count_per_node': 2,
'type': 'ffn', 'hidden_size_per_expert': 2048, 'activation_fn': lambda x: torch.nn.functional.relu(x)
},
scan_expert_func = lambda name, param: setattr(param, 'skip_allreduce', True),
)
# Cast to GPU
moe_layer = moe_layer.to('cuda:0')
# In distributed model, you need further skip doing allreduce on global parameters that have `skip_allreduce` mask,
# e.g.
# for p in moe_layer.parameters():
# if hasattr(p, 'skip_allreduce'):
# continue
# dist.all_reduce(p.grad)
# Forward MoE:
y = moe_layer(x)
print(y)
* Usage of MOELayer Args:
gate_type : dict-type gate description, e.g. {'type': 'top', 'k': 2, 'capacity_factor': -1.5, ..},
or a list of dict-type gate descriptions, e.g. [{'type': 'top', 'k', 2}, {'type': 'top', 'k', 2}],
the value of k in top-gating can be also negative, like -2, which indicates one GPU will hold 1/(-k) parameters of an expert
capacity_factor X can be positive (factor = X), zero (factor = max(needed_volumes)) or negative (factor = min(-X, max(needed_volumes))).
model_dim : the number of channels for MOE's input tensor
experts : a dict-type config for builtin expert network
scan_expert_func : allow users to specify a lambda function to iterate each experts param, e.g. `scan_expert_func = lambda name, param: setattr(param, 'expert', True)`
result_func : allow users to specify a lambda function to format the MoE output and aux_loss, e.g. `result_func = lambda output: (output, output.l_aux)`
group : specify the explicit communication group of all_to_all
seeds : a tuple containing a tripple of int to specify manual seed of (shared params, local params, others params after MoE's)
a2a_ffn_overlap_degree : the value to control a2a overlap depth, 1 by default for no overlap, 2 for overlap a2a with half gemm, ..
parallel_type : the parallel method to compute MoE, valid types: 'auto', 'data', 'model'
pad_samples : whether do auto padding on newly-coming input data to maximum data size in history
* Usage of dict-type Experts Config:
count_per_node : the number of local experts per device (by default, the value is 1 if not specified)
type : available built-in experts implementation, e.g: ffn
hidden_size_per_expert : the hidden size between two linear layers for each expert (used for type == 'ffn' only)
activation_fn : the custom-defined activation function between two linear layers (used for type == 'ffn' only)
has_fc1_bias : If set to False, the expert bias parameters `batched_fc1_bias` is disabled. Default: True
has_fc2_bias : If set to False, the expert bias parameters `batched_fc2_bias` is disabled. Default: True
您可以在下面咨询本文,以了解有关Tutel的更多技术细节:
@article {tutel,
author = {Changho Hwang and Wei Cui and Yifan Xiong and Ziyue Yang and Ze Liu and Han Hu and Zilong Wang and Rafael Salas and Jithin Jose and Prabhat Ram and Joe Chau and Peng Cheng and Fan Yang and Mao Yang and Yongqiang Xiong},
title = {Tutel: Adaptive Mixture-of-Experts at Scale},
year = {2022},
month = jun,
journal = {CoRR},
volume= {abs/2206.03382},
url = {https://arxiv.org/pdf/2206.03382.pdf},
}
该项目欢迎贡献和建议。大多数捐款要求您同意撰写贡献者许可协议(CLA),宣布您有权并实际上授予我们使用您的贡献的权利。有关详细信息,请访问https://cla.opensource.microsoft.com。
当您提交拉动请求时,CLA机器人将自动确定您是否需要提供CLA并适当装饰PR(例如状态检查,评论)。只需按照机器人提供的说明即可。您只需要使用我们的CLA在所有存储库中进行一次。
该项目采用了Microsoft开源的行为代码。有关更多信息,请参见《行为守则常见问题守则》或与其他问题或评论联系[email protected]。
该项目可能包含用于项目,产品或服务的商标或徽标。 Microsoft商标或徽标的授权使用受到了Microsoft的商标和品牌准则的约束。在此项目的修改版本中使用Microsoft商标或徽标不得引起混乱或暗示Microsoft赞助。任何使用第三方商标或徽标都遵守这些第三方政策。