TUTEL MOE: Une implémentation optimisée du mélange de temps, également la première solution parallèle proposant "parallisme / sparsité / capacité / .. de la capacité" pour la formation moderne et une inférence qui ont des comportements dynamiques.
>> Example :
python3 - m torch . distributed . run - - nproc_per_node = 8 - m tutel . examples . bandwidth_test - - size_mb = 256 >> Example for using tensorcore :
python3 - m tutel . examples . helloworld - - dtype = float32
python3 - m tutel . examples . helloworld - - dtype = float32 - - use_tensorcore
python3 - m tutel . examples . helloworld - - dtype = float16
python3 - m tutel . examples . helloworld - - dtype = float16 - - use_tensorcore
>> Example for custom experts :
python3 - m tutel . examples . helloworld_custom_expert - - batch_size = 16
>> Example for NCCL timeout settings :
TUTEL_GLOBAL_TIMEOUT_SEC = 60 python3 - m torch . distributed . run - - nproc_per_node = 8 - m tutel . examples . helloworld - - use_tensorcore >> Example :
# All_to_All_v:
python3 - m torch . distributed . run - - nproc_per_node = 2 - - master_port = 7340 - m tutel . examples . nccl_all_to_all_v
# All_Gather_v:
python3 - m torch . distributed . run - - nproc_per_node = 2 - - master_port = 7340 - m tutel . examples . nccl_all_gather_v
>> How to :
net . batch_all_to_all_v ([ t_x_cuda , t_y_cuda , ..], common_send_counts )
net . batch_all_gather_v ([ t_x_cuda , t_y_cuda , ..]) >> Example ( capacity_factor = 0 for dropless - MoE ):
# Using BatchMatmul:
python3 - m tutel . examples . helloworld - - megablocks_size = 0 - - batch_size = 1 - - num_tokens = 32 - - top = 1 - - eval - - num_local_experts = 128 - - capacity_factor = 0
# Using Megablocks with block_size = 1:
python3 - m tutel . examples . helloworld - - megablocks_size = 1 - - batch_size = 1 - - num_tokens = 32 - - top = 1 - - eval - - num_local_experts = 128 - - capacity_factor = 0
# Using Megablocks with block_size = 2:
python3 - m tutel . examples . helloworld - - megablocks_size = 2 - - batch_size = 1 - - num_tokens = 32 - - top = 1 - - eval - - num_local_experts = 128 - - capacity_factor = 0
>> How to :
self . _moe_layer . forward ( x , .., megablocks_size = 1 ) # Control the switch of megablocks_size (0 for disabled) >> Example :
python3 - m torch . distributed . run - - nproc_per_node = 8 - m tutel . examples . helloworld_switch - - batch_size = 16
>> How to :
self . _moe_layer . forward ( x , .., a2a_ffn_overlap_degree = 2 ) # Control the switch of overlap granularity (1 for no overlapping)
self . _moe_layer . forward ( x , .., adaptive_r = 1 ) # Control the switch of parallelism (0 for DP, 1 for DP + EP, W / E for MP + EP, else for DP + MP + EP)
self . _moe_layer . forward ( x , .., capacity_factor = 1 ) # Control the switch of capacity_volume (positive for padding, negative for no-padding, 0 for dropless)
self . _moe_layer . forward ( x , .., top_k = 1 ) # Control the switch of top_k sparsity >> Example ( suggest enabling 2 DH only at scale , note that the value of - - nproc_per_node MUST equal to total physical GPU counts per node , e . g . 8 for A100x8 ):
python3 - m torch . distributed . run - - nproc_per_node = 8 - m tutel . examples . helloworld - - batch_size = 16 - - use_2dh * Prepare Recommended Pytorch >= 2.0.0 (minimal version == 1.8.0):
# Windows/Linux Pytorch for NVIDIA CUDA >= 11.7:
python3 -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
# Linux Pytorch for AMD ROCm == 5.4.2:
python3 -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.4.2
# Windows/Linux Pytorch for CPU:
python3 -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
* Install Tutel Online:
$ python3 -m pip uninstall tutel -y
$ python3 -m pip install setuptools wheel
$ python3 -m pip install -v -U --no-build-isolation git+https://github.com/microsoft/tutel@main
* Build Tutel from Source:
$ git clone https://github.com/microsoft/tutel --branch main
$ python3 -m pip uninstall tutel -y
$ python3 ./tutel/setup.py install --user
* Quick Test on Single-GPU:
$ python3 -m tutel.examples.helloworld --batch_size=16 # Test Tutel-optimized MoE + manual distribution
$ python3 -m tutel.examples.helloworld_ddp --batch_size=16 # Test Tutel-optimized MoE + Pytorch DDP distribution (requires: Pytorch >= 1.8.0)
$ python3 -m tutel.examples.helloworld_ddp_tutel --batch_size=16 # Test Tutel-optimized MoE + Tutel DDP distribution (ZeRO on optimizors)
$ python3 -m tutel.examples.helloworld_amp --batch_size=16 # Test Tutel-optimized MoE with AMP data type + manual distribution
$ python3 -m tutel.examples.helloworld_custom_expert --batch_size=16 # Test Tutel-optimized MoE + custom defined expert layer
$ python3 -m tutel.examples.helloworld_from_scratch # Test Custom MoE implementation from scratch
$ python3 -m tutel.examples.moe_mnist # Test MoE layer in end-to-end MNIST dataset
$ python3 -m tutel.examples.moe_cifar10 # Test MoE layer in end-to-end CIFAR10 dataset
(If building from source, the following method also works:)
$ python3 ./tutel/examples/helloworld.py --batch_size=16
..
* Run Tutel MoE in Distributed Mode:
(Method A - Torch launcher for `Multi-Node x Multi-GPU`:)
$ ssh <node-ip-0> python3 -m torch.distributed.run --nproc_per_node=8 --nnodes=2 --node_rank=0 --master_addr=<node-ip-0> -m tutel.examples.helloworld --batch_size=16
$ ssh <node-ip-1> python3 -m torch.distributed.run --nproc_per_node=8 --nnodes=2 --node_rank=1 --master_addr=<node-ip-0> -m tutel.examples.helloworld --batch_size=16
(Method B - Tutel launcher for `Multi-Node x Multi-GPU`, requiring package `openmpi-bin`:)
# << Single Node >>
$ mpiexec -bind-to none -host localhost -x LOCAL_SIZE=8 python3 -m tutel.launcher.run -m tutel.examples.helloworld_ddp_tutel --batch_size=16
$ mpiexec -bind-to none -host localhost -x LOCAL_SIZE=8 python3 -m tutel.launcher.run -m tutel.examples.moe_mnist
$ mpiexec -bind-to none -host localhost -x LOCAL_SIZE=8 python3 -m tutel.launcher.run -m tutel.examples.moe_cifar10
...
# << Cross Nodes >>
$ mpiexec -bind-to none -host <node-ip-0>,<node-ip-1>,.. -x MASTER_ADDR=<node-ip-0> -x LOCAL_SIZE=8 python3 -m tutel.launcher.run -m tutel.examples.helloworld --batch_size=16
# << For CPU-based Launch>>
$ mpiexec -bind-to none -host localhost -x LOCAL_SIZE=1 -x OMP_NUM_THREADS=1024 python3 -m tutel.launcher.run -m tutel.examples.helloworld --batch_size=16 --device cpu
La documentation a été déplacée ici.
# Input Example:
import torch
x = torch.ones([6, 1024], device='cuda:0')
# Create MoE:
from tutel import moe as tutel_moe
moe_layer = tutel_moe.moe_layer(
gate_type={'type': 'top', 'k': 2},
model_dim=x.shape[-1],
experts={
'count_per_node': 2,
'type': 'ffn', 'hidden_size_per_expert': 2048, 'activation_fn': lambda x: torch.nn.functional.relu(x)
},
scan_expert_func = lambda name, param: setattr(param, 'skip_allreduce', True),
)
# Cast to GPU
moe_layer = moe_layer.to('cuda:0')
# In distributed model, you need further skip doing allreduce on global parameters that have `skip_allreduce` mask,
# e.g.
# for p in moe_layer.parameters():
# if hasattr(p, 'skip_allreduce'):
# continue
# dist.all_reduce(p.grad)
# Forward MoE:
y = moe_layer(x)
print(y)
* Usage of MOELayer Args:
gate_type : dict-type gate description, e.g. {'type': 'top', 'k': 2, 'capacity_factor': -1.5, ..},
or a list of dict-type gate descriptions, e.g. [{'type': 'top', 'k', 2}, {'type': 'top', 'k', 2}],
the value of k in top-gating can be also negative, like -2, which indicates one GPU will hold 1/(-k) parameters of an expert
capacity_factor X can be positive (factor = X), zero (factor = max(needed_volumes)) or negative (factor = min(-X, max(needed_volumes))).
model_dim : the number of channels for MOE's input tensor
experts : a dict-type config for builtin expert network
scan_expert_func : allow users to specify a lambda function to iterate each experts param, e.g. `scan_expert_func = lambda name, param: setattr(param, 'expert', True)`
result_func : allow users to specify a lambda function to format the MoE output and aux_loss, e.g. `result_func = lambda output: (output, output.l_aux)`
group : specify the explicit communication group of all_to_all
seeds : a tuple containing a tripple of int to specify manual seed of (shared params, local params, others params after MoE's)
a2a_ffn_overlap_degree : the value to control a2a overlap depth, 1 by default for no overlap, 2 for overlap a2a with half gemm, ..
parallel_type : the parallel method to compute MoE, valid types: 'auto', 'data', 'model'
pad_samples : whether do auto padding on newly-coming input data to maximum data size in history
* Usage of dict-type Experts Config:
count_per_node : the number of local experts per device (by default, the value is 1 if not specified)
type : available built-in experts implementation, e.g: ffn
hidden_size_per_expert : the hidden size between two linear layers for each expert (used for type == 'ffn' only)
activation_fn : the custom-defined activation function between two linear layers (used for type == 'ffn' only)
has_fc1_bias : If set to False, the expert bias parameters `batched_fc1_bias` is disabled. Default: True
has_fc2_bias : If set to False, the expert bias parameters `batched_fc2_bias` is disabled. Default: True
Vous pouvez consulter ce document ci-dessous pour connaître plus de détails techniques sur TUTEL:
@article {tutel,
author = {Changho Hwang and Wei Cui and Yifan Xiong and Ziyue Yang and Ze Liu and Han Hu and Zilong Wang and Rafael Salas and Jithin Jose and Prabhat Ram and Joe Chau and Peng Cheng and Fan Yang and Mao Yang and Yongqiang Xiong},
title = {Tutel: Adaptive Mixture-of-Experts at Scale},
year = {2022},
month = jun,
journal = {CoRR},
volume= {abs/2206.03382},
url = {https://arxiv.org/pdf/2206.03382.pdf},
}
Ce projet accueille les contributions et les suggestions. La plupart des contributions vous obligent à accepter un accord de licence de contributeur (CLA) déclarant que vous avez le droit de faire et en fait, accordez-nous les droits d'utilisation de votre contribution. Pour plus de détails, visitez https://cla.opensource.microsoft.com.
Lorsque vous soumettez une demande de traction, un bot CLA déterminera automatiquement si vous devez fournir un CLA et décorer le RP de manière appropriée (par exemple, vérification d'état, commentaire). Suivez simplement les instructions fournies par le bot. Vous n'aurez besoin de le faire qu'une seule fois sur tous les dépositions en utilisant notre CLA.
Ce projet a adopté le code de conduite open source Microsoft. Pour plus d'informations, consultez le code de conduite FAQ ou contactez [email protected] avec toute question ou commentaire supplémentaire.
Ce projet peut contenir des marques ou des logos pour des projets, des produits ou des services. L'utilisation autorisée de marques ou de logos Microsoft est soumise et doit suivre les directives de marque et de marque de Microsoft. L'utilisation de marques ou de logos de Microsoft dans des versions modifiées de ce projet ne doit pas provoquer de confusion ou impliquer le parrainage de Microsoft. Toute utilisation de marques ou de logos tiers est soumis aux politiques de ces tiers.