会话模型开始能够访问Web或使用资源(又称归因)备份其主张。因此,这些聊天机器人可以说是信息检索机器,与传统搜索引擎竞争甚至代替传统搜索引擎。我们想为这些模型提供一个空间,但也要介绍更一般的生成信息检索领域。我们在两个主要主题中暂时驱使该领域:接地答案生成和生成文档检索。我们还包括生成建议,生成的扎根摘要等。
欢迎拉装!
确定性引用:使LLMS更安全用于医疗保健
马特·杨
个人博客 - 2024年4月[链接]
检索增强生成研究:2017-2024
莫里茨·马洛维奇(Moritz Mallawitsch)
扩展知识 - 2024年2月[链接]
掌握抹布:如何构建企业抹布系统
Pratik Bhavsar
伽利略实验室 - 2024年1月[链接]
与LlamainDex本地运行混合8x7
Llamaindex
Llamaindex博客 - 2023年12月[链接]
高级抹布技术:插图概述
伊万·伊林(Ivan Ilin)
迈向AI - 2023年12月[链接]
带有LlamainDex和Neo4J的多模式RAG管道
tomaz bratanic
Llamaindex博客 - 2023年12月[链接]
桌子上的抹布
Langchain
Langchain博客 - 2023年12月[链接]
高级抹布01:小到高架检索
索菲亚·杨
迈向数据科学 - 2023年11月[链接]
查询转换
Langchain
Langchain博客 - 2023年10月[链接]
是什么使对话代理有用?
Nazneen Rajani,Nathan Lambert,Victor Sanh,Thomas Wolf
拥抱面孔博客 - 2023年1月[链接]
预测语言模型的潜在滥用虚假宣传活动以及如何降低风险
Josh A. Goldstein,Girish Sastry,Micah Musser,RenéeDiresta,Matthew Gentzel,Katerina Sedova
OpenAI博客 - 2023年1月[链接]
事实,提取和理由:对检索型的Satyapriya Krishna,Kalpesh Krishna,Anhad Mohananey,Steven Schwarcz,Adam Stambler,Shyam Upadhyay,Manaal Faruqui Arxiv - Semaal Faruqui Arxiv - Sep 2024 [Paper [Paper] [数据] [数据] [数据] [数据]
Litsearch:科学文献搜索的检索基准
Anirudh Ajith,Mengzhou Xia,Alexis Chevalier,Tanya Goyal,Danqi Chen,Tianyu Gao
Arxiv - 2023年7月[纸] [数据]
Bright:用于推理密集型检索的现实且挑战性的基准
Hongjin Su,Howard Yen,Mengzhou Xia,Weijia Shi,Niklas Muennighoff,Han-Yu Wang,Haisu Liu,Quan Shi,Zachary S. Siegel,Michael Tang,Ruoxi Sun,Jinsung Yoon,Jinsung Yoon,Sercan O. Arik,Danqi Chen,Danqi Chen,Tao Yu
Arxiv - 2023年10月[Paper] [Data] [代码]
Freshllms:带有搜索引擎增强的大型语言模型
Tu Vu,Mohit Iyyer,Xuezhi Wang,Noah Constant,Jerry Wei,Jason Wei,Chris Tar,Yun-Hsuan Sung,Denny Zhou,Quoc Le,Thang Luong
Arxiv - 2023年10月[纸] [代码]
LegalBench:一种协作建立的基准,用于衡量大语模型中的法律推理
Neel Guha, Julian Nyarko, Daniel E. Ho, Christopher Ré, Adam Chilton, Aditya Narayana, Alex Chohlas-Wood, Austin Peters, Brandon Waldon, Daniel N. Rockmore, Diego Zambrano, Dmitry Talisman, Enam Hoque, Faiz Surani, Frank Fagan, Galit Sarfaty, Gregory M. Dickinson, Haggai Porat, Jason Hegland, Jessica Wu, Joe Nudell, Joel Niklaus, John Nay, Jonathan H. Choi, Kevin Tobia, Margaret Hagan, Megan Ma, Michael Livermore, Nikon Rasumov-Rahe, Nils Holzenberger, Noam Kolt, Peter Henderson, Sean Rehaag, Sharad Goel, Shang Gao, Spencer威廉姆斯,桑尼·甘地,汤姆·祖尔,瓦伦·艾耶,Zehua li
Arxiv - 2023年8月[纸] [数据集]
开放式对话 - 使大语模型的民主化
Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi-Rui Tam, Keith Stevens, Abdullah Barhoum, Nguyen Minh Duc, Oliver Stanley, Richárd Nagyfi, Shahul ES, Sameer Suri, David Glushkov, Arnav Dantuluri, Andrew Maguire,克里斯托夫·舒曼(Christoph Schuhmann)
Arxiv - 2023年4月[纸]
chatgpt-retrievalqa
Arian Askari,Mohammad Aliannejadi,Evangelos Kanoulas,Suzan Verberne
GitHub - 2023年2月[代码]
KAMEL:语言模型中的多源实体的知识分析
Jan-Christoph Kalo,Leandra Fichtel
AKBC 22 - [纸]
真实性:测量模型如何模仿人类的虚假性
斯蒂芬妮·林(Stephanie Lin),雅各布·希尔顿(Jacob Hilton),欧文·埃文斯(Owain Evans)
ARXIV - 2021年9月[Paper] [代码]
复杂的答案检索
Laura Dietz,Manisha Verma,Filip Radlinski,Nick Craswell,Ben Gamari,Jeff Dalton,John Foley
TREC - 2017-2019 [链接]
GraphRag
乔纳森·拉尔森(Jonathan Larson),史蒂文·特鲁伊特(Steven Truitt)
微软 - 2024年2月[代码]
缩小知识评估差距:开放域问题通过多晶格答案回答
Gal Yona,Roee Aharoni,Mor Geva
Arxiv - 2024年1月[纸]
DHS LLM研讨会 - 模块6
Sourab Mangrulkar
GitHub - 2023年12月[代码]
PrimeQA:最先进的多语言问题回答研发的主要存储库
Avirup Sil,Jaydeep Sen,Bhavani Iyer,Martin Franz,Kshitij Fadnis,Mihaela Bornea,Sara Rosenthal,Scott McCarley,Rong Zhang,Vishwajeet Kumar,Vishwajeet Kumar,Yulong Li,Yulong Li,Md Arafat Sultan,Arafat Sultan,Riyaz Bhat,Raduian,Raduian,Salim,Salim,Salim,Salim,Salim,Salim,Salim,
Arxiv - 2023年1月[纸] [代码]
TRL:变压器增强学习
Leandro von Werra,Younes Belkada,Lewis Tunstall,Edward Beeching,Tristan Thrush,Nathan Lambert,Shengyi Huang
GitHub - 2020 [代码]
FACTSCORE:长期文本生成中事实精度的细粒度原子评估
Sewon Min,Kalpesh Krishna,Xinxi Lyu,Mike Lewis,Wen-Tau Yih,Pang Wei Koh,Mohit Iyyer,Luke Zettlemoyer,Hannaneh Hajishirzi
PYPI - 2023年5月[纸] [代码]
FACTKB:使用语言模型增强的事实知识的可推广的事实评估
Shangbin Feng,Vidhisha Balachandran,Yuyang Bai,Yulia Tsvetkov
Arxiv - 2023年5月[纸] [代码]
评估生成搜索引擎的可验证性
Nelson F. Liu,Tianyi Zhang,Percy Liang
Arxiv - 2023年4月[纸] [代码]
针对推荐系统和个性化的生成AI研讨会
Narges Tabari,Aniket Deshmukh,Wang-Cheng Kang,Rashmi Gangadharaiah,Hamed Zamani,Julian McAuley,George Karypis
KDD 24 - 2024年8月[链接]
有关生成信息检索的第二个研讨会
GabrielBénédict,Ruqing Zhang,Donald Metzler,Andrew Yates,Ziyan Jiang
Sigir 24 - 2024年7月[链接]
个性化生成的AI
Zheng Chen,Ziyan Jiang,Fan Yang,Zhankui He,Yupeng Hou,Eunah Cho,Julian McAuley,Aram Galstyan,Xiaohua Hu,Jie Yang
CIKM 23 - 2023年10月[链接]
有关生成模型推荐的首个研讨会
Wenjie Wang,Yong Liu,Yang Zhang,Weiwen Liu,Fuli Feng,Xiangnan He,Aixin Sun
CIKM 23 - 2023年10月[链接]
有关生成信息检索的第一个研讨会
GabrielBénédict,Ruqing Zhang,Donald Metzler
Sigir 23 - 2023年7月[链接]
基于检索的语言模型和应用
Akari Asai,Sewon Min,Zexuan Zhong,Danqi Chen
ACL 23 - 2023年7月[链接]
代理信息检索
Weinan Zhang,Junwei Liao,Ning Li,Kounianhua du
Arxiv - 2024年10月[纸]
背诵,重建,回忆:LMS中的记忆作为多方面现象
USVSN Sai Prashanth,Alvin Deng,Kyle O'Brien,Jyothir SV,Mohammad Aflah Khan,Jaydeep Borkar,Christopher A. Choquetter A. Choquette-Choo,Jacob Ray Fuehne,Stella Biderman,Stella Biderman,Tracy KE,Katherine Lee,Naomi Saphra,Naomi Saphra
Arxiv - 2024年6月[纸]
Chatgpt是胡说八道
迈克尔·汤森·希克斯,詹姆斯·汉弗莱斯,乔·斯莱特
伦理INF技术 - 2024年6月[纸]
多模式大语言模型的幻觉:调查
Zechen Bai,Pichao Wang,Tianjun Xiao,Tong He,Zongbo Han,Zheng Zhang,Mike Zheng Shou
Arxiv - 2024年4月[纸]
从匹配到一代:有关生成信息检索的调查
Xiaoxi Li,Jiajie Jin,Yujia Zhou,Yuyao Zhang,Peitian Zhang,Yutao Zhu和Zhicheng Dou
Arxiv - 2024年4月[纸]
LLM的知识冲突:一项调查
Rongwu Xu,Zehan Qi,Cunxiang Wang,Hongru Wang,Yue Zhang,Wei Xu
Arxiv - 2024年3月[纸]
关于Sigir 2023的第一届生成信息检索(Gen-IR 2023)的报告报告(Gen-IR 2023)
GabrielBénédict,Ruqing Zhang,Donald Metzler,Andrew Yates,Romain Deffayet,Philipp Hager,Sami Jullien
西吉尔论坛 - 2023年12月[纸]
关于在生成AI时代的第一届任务IR的研讨会报告
Chirag Shah,Ryen W. White
西吉尔论坛 - 2023年12月[纸]
迈向生成搜索和建议:Recsys 2023的主题演讲
tat-seng chua
西吉尔论坛 - 2023年12月[纸]
大型搜索模型:重新定义LLM时代的搜索堆栈
Liang Wang,Nan Yang,小黄,Linjun Yang,Rangan Majumder,Furu Wei
西吉尔论坛 - 2023年12月[纸]
生成信息提取的大型语言模型:调查
Derong Xu,Wei Chen,Wenjun Peng,Chao Zhang,Tong Xu,Xiangyu Zhao,Xian Wu,Yefeng Zheng,Ennong Chen
Arxiv - 2023年12月[纸]
基于验证的语言模型的密集文本检索:调查
韦恩Xin Zhao,Jing Liu,Ruiyang Ren,Ji-Rong Wen
TOIS - 2023年12月[纸]
大型语言模型的检索演示一代:一项调查
Yunfan Gao,Yun Xiong,Xinyu Gao,Kangxiang Jia,Jinliu Pan,Yuxi BI,Yi Dai,Jiawei Sun,Haofen Wang
Arxiv - 2023年12月[纸]
校准语言模型必须幻觉
Adam Tauman Kalai,Santosh S. Vempala
Arxiv - 2023年11月[纸]
AI海洋中的警笛声:大语言模型中有关幻觉的调查
Yue Zhang,Yafu Li,Leyang Cui,Deng Cai,Lemao Liu,Tingchen Fu,Xinting Huang,Enbo Zhao,Yu Zhang,Yu Zhang,Yulong Chen,Longyue Wang,Anh Tuan Luu,Wei Bi,Wei Bi,Wei Bi,Freda Shi,Shuming Shi Shi Shiming Shuming Shuming Shiming Shuming Shuming Shiming Shuming Shiming Shiming Shiming Shiming Shiming Shiming Shiming Shiming Shuming Shiming
Arxiv - 2023年9月[纸]
模仿专有LLM的错误承诺
Arnav Gudibande,Eric Wallace,Charlie Snell,Xinyang Geng,Hao Liu,Pieter Abbeel,Sergey Levine,Dawn Song
Arxiv - 2023年5月[纸]
生成建议:朝着下一代推荐范式
Fengji Zhang,Bei Chen,Yue Zhang,Jin Liu,Daoguang Zan,Yi Mao,Jian-Guang Lou,Weizhu Chen
Arxiv - 2023年4月[纸]
增强语言模型:调查
GrégoireMialon,RobertoDessì,Maria Lomeli,Christoforos Nalmpantis,Ram Pasunuru,Roberta Raleanu,BaptisteRozière,Timo Schick,Jane Dwivedi-yu,Asli Celikyilmaz,Edouard Grave,Edouard Lecun,Yann Lecun,Thomas scialom,thomas scialom,
Arxiv - 2023年2月[纸]
生成语言模型和自动化影响操作:新兴威胁和潜在的缓解
Josh A. Goldstein,Girish Sastry,Micah Musser,Renee Diresta,Matthew Gentzel,Katerina Sedova
Arxiv - 2023年1月[纸]
会话信息寻求。对话搜索,建议和问题回答的简介
Hamed Zamani,Johanne R. Trippas,Jeff Dalton和Filip Radlinski
Arxiv - 2023年1月[纸]
事实
凯文·穆里根(Kevin Mulligan)和法布里斯·科雷亚(Fabrice Correia)
斯坦福大学哲学百科全书 - 2021年冬季[url]
真实的AI:开发和管理不说谎的AI
Owain Evans,Owen Cotton-Barratt,Lukas Finnveden,Adam Bales,Avital Balwit,Peter Wills,Luca Righetti,William Saunders
Arxiv - 2021年10月[纸]
重新思考搜索:使域专家脱离Dilettantes
唐纳德·梅茨勒(Donald Metzler),Yi Tay,Dara Bahri,Marc Najork
Sigir论坛2021 - 2021年5月[纸]
归因于问题回答:归因于大语言模型的评估和建模
Bernd Bohnet, Vinh Q. Tran, Pat Verga, Roee Aharoni, Daniel Andor, Livio Baldini Soares, Jacob Eisenstein, Kuzman Ganchev, Jonathan Herzig, Kai Hui, Tom Kwiatkowski, Ji Ma, Jianmo Ni, Tal Schuster, William W. Cohen, Michael Collins, Dipanjan Das, Donald Metzler,Slav Petrov,Kellie Webster
Arxiv - 2022年12月[纸]
推理时间的外部接地/检索
猛禽:递归的抽象处理,用于绿化的检索
Parth Sarthi,Salman Abdullah,Aditi Tuli,Shubh Khanna,Anna Goldie,Christopher D. Manning
ICLR 24 - 2024年1月[纸]
纠正式检索增强一代
Shi-Qi Yan,Jia-chen Gu,Yun Zhu,Zhen-hua ling
Arxiv - 2024年1月[纸]
现在是时间:将时间范围纳入检索增强语言模型
Anoushka Gade,Jorjeta Jetcheva
Arxiv - 2024年1月[纸]
抹布与微调:管道,权衡和农业案例研究
Angels Balaguer, Vinamra Benara, Renato Luiz de Freitas Cunha, Roberto de M. Estevão Filho, Todd Hendry, Daniel Holstein, Jennifer Marsman, Nick Mecklenburg, Sara Malvar, Leonardo O. Nunes, Rafael Padilha, Morris Sharp, Bruno Silva, Swati Sharma, Vijay Aski, Ranveer Chandra
Arxiv - 2024年1月[纸]
测序ma。
Quinn Patwardhan,Grace Hui Yang
TREC 23 - 2023年11月[纸]
自我剥离:学会通过自我反省来检索,产生和批评
匿名的
ICLR 24 - 2023年10月[纸]
RA-DIT:检索型双指令调整
匿名的
ICLR 24 - 2023年10月[纸]
具有检索增强编码器语言模型的秘密学习
匿名的
ICLR 24 - 2023年10月[纸]
使检索声明的语言模型与无关紧要的背景
匿名的
ICLR 24 - 2023年10月[纸]
检索符合长语言模型
匿名的
ICLR 24 - 2023年10月[纸]
重新设计大型语言模型的域名作为适应性retrieve-Revise
匿名的
ICLR 24 - 2023年10月[纸]
仪表盘:指导调整后检索预告片
匿名的
ICLR 24 - 2023年10月[纸]
当然:通过总结检索提高LLM的开放域问题答案
匿名的
ICLR 24 - 2023年10月[纸]
重新组件:通过上下文压缩和选择性增强,改善检索型LMS
匿名的
ICLR 24 - 2023年10月[纸]
检索是准确的一代
匿名的
ICLR 24 - 2023年10月[纸]
PaperQA:检索仪器的科学研究生成剂
匿名的
ICLR 24 - 2023年10月[纸]
理解长形问答回答的检索增强
匿名的
ICLR 24 - 2023年10月[纸]
通过贝叶斯度量增强检索的个性化语言生成
匿名的
ICLR 24 - 2023年10月[纸]
DSPY:汇编声明语言模型将其调用到自我改善管道中
Omar Khattab,Arnav Singhvi,Paridhi Maheshwari,Zhiyuan Zhang,Keshav Santhanam,Sri Vardhamanan,Saifor Haq,Ashutosh Sharma,Thomas T.
Arxiv - 2023年10月[纸] [代码]
RA-DIT:检索型双指令调整
XI Victoria Lin,Xilun Chen,Mingda Chen,Weijia Shi,Maria Lomeli,Rich James,Pedro Rodriguez,Jacob Kahn,Gergely Szilvasy,Mike Lewis,Mike Lewis,Luke Zettlemoyer,Scottlemoyer,Scottlemoyer,Scottlemoyer,Scottlemoyer,Scottlehih
Arxiv - 2023年8月[纸]
工具文档可以通过大语言模型启用零击工具使用
Cheng-Yu Hsieh,Si-An Chen,Chun-Liang Li,Yasuhisa Fujii,Alexander Ratner,Chen-Yu Lee,Ranjay Krishna,Tomas Pfister
Arxiv - 2023年8月[纸]
ReaugKD:检索提取的知识蒸馏预训练的语言模型
Jianyi Zhang,Aashiq Muhamed,Aditya Anantharaman,Guoyin Wang,Changyou Chen,Kai Zhong,Qingjun Cui,Yi Xu,Belinda Zeng,Trishul Chilimbi,Yiran Chens Chen
ACL 23 - 2023年7月[纸]
基于表面的检索降低了检索口语模型的困惑
Ehsan Doostmohammadi,Tobias Norlund,Marco Kuhlmann,Richard Johansson
ACL 23 - 2023年7月[纸]
软提示调整以增强大型语言模型的密集检索
Zhiyuan Peng,Xuyang Wu,yi fang
Arxiv - 2023年6月[纸]
reta-llm:检索大型语言模型工具包
Jiongnan Liu,Jiajie Jin,Zihan Wang,Jiehan Cheng,Zhicheng Dou,Ji-Rong Wen
Arxiv - 2023年6月[纸]
WebGLM:朝着具有人类偏好的有效的网络增强问题答案系统
小刘,hanyu lai,hao yu,Yifan Xu,Aohan Zeng,Zhengxiao du,Peng Zhang,Yuxiao Dong,Jie Tang
Arxiv - 2023年6月[纸]
Wikichat:通过在Wikipedia上几乎没有射门的幻觉来停止大型语言模型聊天机器人的幻觉
Sina J. Semnani,Violet Z. Yao,Heidi C. Zhang,Monica S. Lam
EMNLP调查结果2023 - 2023年5月[Paper] [Code] [Demo]
ret-llm:迈向大型语言模型的一般阅读写入记忆
Ali Modarressi,Ayyoob Imani,Mohsen Fayyaz,Hinrich Schutze
Arxiv - 2023年5月[纸]
大猩猩:与大型API相连的大语言模型
Shishir G. Patil,Tianjun Zhang,Xin Wang,Joseph E. Gonzalez
Arxiv - 2023年5月[纸] [代码]
我们是否可以通过检索预读自回旋语言模型?一项全面的研究
Boxin Wang,Wei Ping,Peng Xu,Lawrence McAfee,Zihan Liu,Mohammad Shoeybi,Yi dong,Oleksii Kuchaiev,Bo Li,Bo Li,Chaowei Xiao,Anima Anandkumar,Bryan Catanzaro
Arxiv - 2023年4月[纸] [代码]
检查您的事实并重试:改进具有外部知识和自动反馈的大型语言模型
鲍林·彭(Baolin Peng),米歇尔·加利(Michel Galley),彭昌(Pencheng He),霍·郑(Hao Cheng),Yujia Xie,Yu Hu,Qiuyuan Huang,Lars Liden,Zhou Yu,Weizhu Chen,Jianfeng Gao
Arxiv - 2023年2月[纸] [代码]
工具形式:语言模型可以教会自己使用工具
Timo Schick,Jane Dwivedi-Yu,RobertoDessì,Roberta Realeanu,Maria Lomeli,Luke Zettlemoyer,Nicola Cancedda,Thomas Scialom
Arxiv - 2023年2月[纸]
重新申请:检索启动的黑盒语言模型
Weijia Shi,Sewon Min,Michihiro Yasunaga,Minjoon Seo,Rich James,Mike Lewis,Luke Zettlemoyer,Wen-Tau Yih
Arxiv - 2023年1月[纸]
在文章检索语言模型中
Ori Ram,Yoav Levine,Itay Dalmedigos,Dor Muhlgay,Amnon Shashua,Kevin Leyton-Brown,Yoav Shoham
AI21实验室 - 2023年1月[纸] [代码]
建造开放域聊天机器人的食谱
Stephen Roller,Emily Dinan,Naman Goyal,Da Ju,Mary Williamson,Yinhan Liu,Jing Xu,Myle Ott,Eric Michael Smith,Y-Lan Boureeau,Jason Weston
EACL 2021 - 2021年4月[纸]
ATMAN:通过有效的注意力操纵来了解变压器预测
Hamed Zamani,Johanne R. Trippas,Jeff Dalton和Filip Radlinski
Arxiv - 2023年1月[纸]
veromae v2:双链蒙面的自动编码器,用于预训练以检索为导向的语言模型
Shitao Xiao,Zheng Liu
Arxiv - 2023年11月[纸]
演示搜索预测:为知识密集型NLP Omar Khattab,Keshav Santhanam,Xiang Lisa Li,David Hall,Percy Liang,Christopher Potts,Matei Zaharia,编写检索和语言模型
Arxiv - 2022年12月[纸]
通过从数万亿个代币中检索语言模型来改善语言模型
Sebastian Borgeaud,Arthur Mensch,Jordan Hoffmann,Trevor Cai,Eliza Rutherford,Katie Millican,George van Den Driessche,Jean-Baptiste Lespiau,Bogdan Damoc,Aidan Clark,Aidan Clark,Aidan Clark,diego de las casas casas casas,diego Loren Maggiore,Chris Jones,Albin Cassirer,Andy Brock,Michela Paganini,Geoffrey Irving,Oriol Vinyals,Simon Osindero,Karen Simonyan,Jack W. Rae,Erich Elsen和Laurent Sifre
Arxiv - 2022年2月[纸]
通过从数万亿个代币中检索语言模型来改善语言模型
Sebastian Borgeaud,Arthur Mensch,Jordan Hoffmann,Trevor Cai,Eliza Rutherford,Katie Millican,George van Den Driessche,Jean-Baptiste Lespiau,Bogdan Damoc,Aidan Clark,Aidan Clark,Aidan Clark,diego de las casas casas casas,diego Loren Maggiore,Chris Jones,Albin Cassirer,Andy Brock,Michela Paganini,Geoffrey Irving,Oriol Vinyals,Simon Osindero,Karen Simonyan,Jack W. Rae,Erich Elsen,Erich Elsen,Erich Elsen,Laurent Sifre Sifre
Arxiv - 2021年12月[纸]
WebGPT:通过人类反馈的浏览器协助提问
Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, John Schulman
Arxiv - 2021年12月[纸]
Bert-knn:在预验证的语言模型中添加KNN搜索组件,以获得更好的质量请访问
Nora Kassner,HinrichSchütze
EMNLP 2020 - 2020年11月[纸]
领域:检索语言模型预训练
Kelvin Guu,Kenton Lee,Zora Tung,Panupong Pasupat,Ming-Wei Chang
ICML 2020 - 2020年7月[纸]
混合检索产生神经对话模型
Liu Yang,Junjie Hu,Minghui Qiu,Chen Qu,Jianfeng Gao,W。BruceCroft,Xiaodong Liu,Yelong Shen,Jingjing Liu
ARXIV - 2019年4月[纸]
在推理时基于内部模型重量
大型语言模型如何在预处理过程中获取事实知识?
Hoyeon Chang,Jinho Park,Seonghyeon Ye,Sohee Yang,Youngkyung Seo,Du-Seong Chang,Minjoon SEO
Arxiv - 2024年6月[纸]
微调语言模型的事实模型
Katherine Tian,Eric Mitchell,Huaxiu Yao,Christopher D. Manning,Chelsea Finn
Arxiv - 2023年11月[纸]
r-tuning:教大语模型拒绝未知问题
Hanning Zhang,Shizhe Diao,Yong Lin,Yi R. Fung,Qing Lian,Xingyao Wang,Yangyi Chen,Heng Ji,Tong Zhang
Arxiv - 2023年11月[纸]
EasyEdit:大语模型的易于使用的知识编辑框架
Peng Wang,Ningyu Zhang,Xin Xie,Yunzhi Yao,Bozhong Tian,Mengru Wang,Zekun XI,Siyuan Cheng,Kangwei Liu,Guozhou Zheng,Huajun Chen
Arxiv - 2023年8月[纸]
在语言模型中检查和编辑知识表示
埃文·埃尔南德斯(Evan Hernandez),贝琳达·Z(Belinda Z.
Arxiv - 2023年4月[纸] [代码]
使用生成模型来利用通道检索开放域问题回答
Gautier Izacard,Edouard Grave
Arxiv - 2023年2月[纸]
在没有监督的情况下发现语言模型中的潜在知识
Collin Burns,Haotian Ye,Dan Klein,Jacob Steinhardt
ICLR 23 - 2023年2月[纸] [代码]
Galactica:科学的大语言模型
Ross Taylor,Marcin Kardas,Guillem Cucurull,Thomas Scialom,Anthony Hartshorn,Elvis Saravia,Andrew Poulton,Viktor Kerkez,Robert Stojnic
Galactica.org - 2022 [纸]
Blenderbot 3:一种部署的对话代理,不断学习以负责任地参与
Kurt Shuster, Jing Xu, Mojtaba Komeili, Da Ju, Eric Michael Smith, Stephen Roller, Megan Ung, Moya Chen, Kushal Arora, Joshua Lane, Morteza Behrooz, William Ngan, Spencer Poff, Naman Goyal, Arthur Szlam, Y-Lan Boureau, Melanie Kambadur, Jason Weston
Arxiv - 2022年8月[纸]
生成而不是检索:大语言模型是强大的上下文生成器
Wenhao Yu,Dan Iter,Shuohang Wang,Yichong Xu,Mingxuan JU,Soumya Sanyal,Chenguang Zhu,Michael Zeng,Meng Jiang
ICLR 2023 - 2022年9月[纸]
朗诵语言模型
Zhiqing Sun,Xuezhi Wang,Yi Tay,Yiming Yang,Denny Zhou
ICLR 2023 - 2022年9月[纸]
通过有针对性的人类判断来改善对话代理的一致性
Amelia Glaese, Nat McAleese, Maja Trębacz, John Aslanides, Vlad Firoiu, Timo Ewalds, Maribeth Rauh, Laura Weidinger, Martin Chadwick, Phoebe Thacker, Lucy Campbell-Gillingham, Jonathan Uesato, Po-Sen Huang, Ramona Comanescu, Fan Yang, Abigail See, Sumanth达瑟里(Dathatri),罗里·格里格(Rory Greig),查理·陈(Charlie Chen),道格·弗里茨(Doug Fritz),乔姆·桑切斯·埃里亚斯(Jaume Sanchez Elias),理查德·格林(Richard Green),苏马·莫克拉(SoňaaMokrá),尼古拉斯·费尔南多(Nicholas Fernando),盒子,瑞秋·弗利(Boxi Wu杰弗里·欧文(Geoffrey Irving)
Arxiv - 2022年9月[纸]
LAMDA:对话应用程序的语言模型
Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, YaGuang Li, Hongrae Lee, Huaixiu Steven Zheng, Amin Ghafouri, Marcelo Menegali, Yanping Huang, Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts, Maarten Bosma, Vincent Zhao, Yanqi Zhou, Chung-Ching Chang, Igor Krivokon, Will Rusch, Marc Pickett, Pranesh Srinivasan, Laichee Man, Kathleen Meier-Hellstern,梅雷迪思·林格尔·莫里斯(Meredith Ringel Morris),图尔西·多什(Tulsee Doshi),雷尼利托·德洛斯·桑托斯(Renelito Delos Santos),托朱杜克(Toju Duke),约翰尼·索克(Johnny Soraker),本·泽文伯根(Ben Zevenbergen),vinodkumar prabhakaran,马克·迪亚兹(Mark Diaz),本·哈钦森(Mark Hutchinson),克里斯汀·奥尔森(Kristen Olson),克里斯汀·奥尔森Matthew Lamm,Viktoriya Kuzmina,Joe Fenton,Aaron Cohen,Rachel Bernstein,Ray Kurzweil,Blaise Aguera-Arcas,Claire Cui,Marian Croak,Ed Chi,Ed Chi,Chi,Quoc Le,Quoc Le
Arxiv - 2022年1月[纸]
语言模型或知识库的语言模型
Simon Razniewski,Andrew Yates,Nora Kassner,Gerhard Weikum
DL4KG 2021 - 2021年10月[纸]
通过记忆的概括:最近的邻居语言模型
Urvashi Khandelwal,Omer Levy,Dan Jurafsky,Luke Zettlemoyer,Mike Lewis
ICLR 2020 - 2019年9月[纸] [代码]
chatgpt擅长搜索吗?调查大型语言模型作为重新排名的代理
Wenhao Yu,Hongming Zhang,Xiaoman Pan,Kaixin MA,Hongwei Wang,Dong Yu
Arxiv - 2023年11月[纸]
指令蒸馏使大型语言模型有效地零摄像机
Weiwei Sun,Zheng Chen,Xinyu MA,Lingyong Yan,Shuaiqiang Wang,Pengjie Ren,Zhumin Chen,Dawei yin,Zhaochun ren
Arxiv 2023 - 2023年11月[纸]
评论家:大型语言模型可以通过工具相互作用的批评自我纠正
Zhibin Gou,Zhihong Shao,Yeyun Gong,Yelong Shen,Yujiu Yang,Nan Duan,Weizhu Chen
ICLR 2024 - 2024年1月[纸]
及时的针迹节省了九个:通过验证低信心生成来检测和缓解LLM的幻觉
Neeraj Varshney,Wenlin Yao,Hongming Zhang,Jianshu Chen,Dong Yu
Arxiv - 2023年8月[纸]
RARR:使用语言模型研究和修改语言模型所说的话
Luyu Gao,Zhuyun dai,Panupong Pasupat,Anthony Chen,Arun Tejasvi Chaganty,Yicheng Fan,Vincent Zhao,Ni Lao,Hongrae Lee,Da-Cheng Juan,Kelvin Guu
ACL 2023 - 2023年7月[纸]
验证和编辑:一个知识增强的思想链框架
Ruochen Zhao,Xingxuan Li,Shafiq Joty,Chengwei Qin,Lidong Bing
ACL 2023 - 2023年7月[纸]
积极检索增强一代
Zhengbao Jiang,Frank F. Xu,Luyu Gao,Zhiqing Sun,Qian Liu,Jane Dwivedi-yu,Yiming Yang,Jamie Callan,Graham Neubig
Arxiv - 2023年5月[纸] [代码]
通过插件检索反馈改善语言模型
Wenhao Yu,Zhihan Zhang,Zhenwen Liang,Meng Jiang,Ashish Sabharwal
Arxiv - 2023年5月[纸]
长期的语言校准
Neil Band,Xuechen LI,Tengyu MA,Tatsunori Hashimoto
Arxiv 2024 - 2024年6月[纸]
相信或不相信您的LLM
Yasin Abbasi Yadkori,Ilja Kuzborskij,AndrásGyörgy,Csabaszepesvári
Arxiv 2024 - 2024年6月[纸]
说话:教LLMS以自我反射原理表达信心
Tianyang Xu,Shujin Wu,Shizhe Diao,Xiaoze Liu,Xingyao Wang,Yangyi Chen,Jing Gao
Arxiv 2024 - 2024年5月[纸]
专家不作弊:通过预测对学习您不知道的知识
Daniel D. Johnson,Daniel Tarlow,David Duvenaud,Chris J. Maddison
Arxiv 2024 - 2024年2月[纸]
解锁预期文本生成:一种用大语言模型的忠实解码的限制方法
匿名的
ICLR 24 - 2023年10月[纸]
Dola:通过对比层解码可改善大语言模型的事实
Yung-Sung Chuang,Yujia Xie,Hongyin Luo,Yoon Kim,James Glass,Pengcheng He
ICLR 24 - 2023年9月[纸]
一种以数据为中心的方法,以产生忠实而高质量的患者摘要,以大语言模型
Stefan Hegselmann,Shannon Zejiang Shen,Florian Gierse,Monica Agrawal,David Sontag,Xiaoyi Jiang
Arxiv 24 - 2024年2月[纸]
随机抹布:通过预期的效用最大化,端到端检索发达的生成
Hamed Zamani,Michael Bendersky
Arxiv 24 - 2024年5月[纸]
宪法AI:无害反馈的无害
Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile Lukosiute, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec,Sheer El Showk,Stanislav Fort,Tamera Lanham,Timothy Telleen lawton,Tom Conerly,Tom Conerly,Tom Henighan,Tristan Hume,Samuel R. Bowman,Zac Hatfield-Dodds,Ben Mann,Dario Amodei,Dario Amodei,Nicholas Joseph,Nicholas Joseph,Nicholas Joseph,Sam McCandlish,Tom Brown,Jared Kaplan annthran AnthroplanAnthropic.com-222222222222222222222222222222222。
部署后学习新技能:通过人类反馈改善开放域Internet驱动的对话
Jing Xu,Megan UNG,Mojtaba Komeili,Kushal Arora,Y-Lan Boureeau,Jason Weston
Arxiv - 2022年8月[纸]
检索授权的多模式建模
Michihiro Yasunaga,Armen Aghajanyan,Weijia Shi,Rich James,Jure Leskovec,Percy Liang,Mike Lewis,Luke Zettlemoyer,Wen-Tau Yihih
Arxiv - 2022年11月[纸]
RAMM:通过多模式预训练回答的检索生物医学视觉问题
Zheng Yuan,Qiao Jin,Chuanqi Tan,Zhengyun Zhao,Hongyi Yuan,Fei Huang,Songfang Huang
Arxiv - 2023年3月[纸]
与知识密集的多步骤问题的链条回收相互检索,刺激性的Trivedi,Niranjan Balasubramanian,Tushar Khot和Ashish Sabharwal ACL 23 - Jul 2023 [Paper] [Paper]
反应:在语言模型中协同推理和作用
Shunyu Yao,Jeffrey Zhao,Dian Yu,Nan Du,Izhak Shafran,Karthik Narasimhan,Yuan Cao
Arxiv - 2022年10月[纸]
回顾器:通过迭代检索和生成完成存储库级代码完成
Fengji Zhang,Bei Chen,Yue Zhang,Jin Liu,Daoguang Zan,Yi Mao,Jian-Guang Lou,Weizhu Chen
Arxiv - 2023年3月[纸]
DOCMPROMPTING:通过检索文档来生成代码
Shuyan Zhou,Uri Alon,Frank F. Xu,Zhiruo Wang,Zhengbao Jiang,Graham Neubig
ICLR 23 - 2022年7月[纸] [代码] [数据]
生成,过滤和保险丝:通过多步关键字生成查询零摄像神经排名的扩展
Minghan Li,Honglei Zhuang,Kai Hui,Zhen Qin,Jimmy Lin,Rolf Jagerman,Xuanhui Wang,Michael Bendersky
Arxiv - 2023年11月[纸]
Agent4Ranking:使用Multi-Agent LLM通过个性化查询重写语义稳健排名
Xiaopeng LI,Lixin SU,Pengyue Jia,Xiangyu Zhao,Suqi Cheng,Junfeng Wang,Dawei Yin
Arxiv - 2023年12月[纸]
在赞助搜索中查询重写的统一生成和密集检索
Akash Kumar Mohankumar,Bhargav Dodla,Gururaj K,Amit Singh
Arxiv - 2022年9月[纸]
产生事实一致的运动突出显示叙述
Noah Sarfati,Ido Yerushalmy,Michael Chertok,Yosi Keller
MMSPORTS 2023 - 10月23日[纸]
遗传生成信息检索
Hrishikesh Kulkarni,Zachary Young,Nazli Goharian,Ophir Frieder,Sean Macavaney
Doceng 23 - 8月23日[纸]
学习总结人类反馈
Nisan Stiennon,Long Ouyang,Jeff Wu,Daniel M. Ziegler,Ryan Lowe,Chelsea Voss,Alec Radford,Dario Amodei,Paul Christiano
神经2020 - 2020年9月[纸]
关于抽象性摘要中的忠诚和事实
约书亚·梅内斯(Joshua Maynez),沙希·纳拉扬(Shashi Narayan),伯恩德·博内特(Bernd Bohnet),瑞安·麦克唐纳(Ryan McDonald)
ACL 2020 - 2020年5月[纸]
尝试之前的增强:通过表扩展来回答知识增强的表问题
Yujian Liu,Jiabao JI,Tong Yu,Ryan Rossi,Sungchul Kim,Handong Zhao,Ritwik Sinha,Yang Zhang,Shiyu Chang
Arxiv - 2024年1月[纸]
我们通过重新使用Awesome-eneration-Retrieval模型的内容,并为此完全赞扬Chriskuei的内容来启动这一部分!现在,我们在顶部添加了一些内容。
DE-DSI:分散的可区分搜索索引
Petru Neague,Marcel Gregoriadis,Johan Pouwelse
Euromlsys 2024年4月24日[纸]
通过顺序学习过程listiswise生成检索模型
Yubao Tang,Ruqing Zhang,Jiafeng Guo,Maarten de Rijke,Wei Chen,Xueqi Cheng
Tois 2024 - 2024年3月[纸]
蒸馏增强的生成率检索
Yongqi Li,Zhen Zhang,Wenjie Wang,Liqiang Nie,Wenjie Li,Tat-Seng Chua
Arxiv 2024 - 2024年2月[纸]
自我拉回:用一种大语言模型构建信息检索系统
Qiaoyu Tang, Jiawei Chen, Bowen Yu, Yaojie Lu, Cheng Fu, Haiyang Yu, Hongyu Lin, Fei Huang, Ben He, Xianpei Han, Le Sun, Yongbin Li
arXiv 2024 – Feb 2024 [Paper]
Generative Dense Retrieval: Memory Can Be a Burden
Peiwen Yuan, Xinglin Wang, Shaoxiong Feng, Boyuan Pan, Yiwei Li, Heda Wang, Xupeng Miao, Kan Li
EACL 2024 - Jan 2024 [paper] [code]
Auto Search Indexer for End-to-End Document Retrieval
Tianchi Yang, Minghui Song, Zihan Zhang, Haizhen Huang, Weiwei Deng, Feng Sun, Qi Zhang
EMNLP 2023 - December 23 [paper]
DiffusionRet: Diffusion-Enhanced Generative Retriever using Constrained Decoding
Shanbao Qiao, Xuebing Liu, Seung-Hoon Na
EMNLP Findings 2023 – Dec 2023 [paper]
Scalable and Effective Generative Information Retrieval
Hansi Zeng, Chen Luo, Bowen Jin, Sheikh Muhammad Sarwar, Tianxin Wei, Hamed Zamani
WWW 2024 - Nov 2023 [paper] [code]
Nonparametric Decoding for Generative Retrieval
Hyunji Lee, JaeYoung Kim, Hoyeon Chang, Hanseok Oh, Sohee Yang, Vladimir Karpukhin, Yi Lu, Minjoon Seo
ACL Findings 2023 – Jul 2023 [paper]
Model-enhanced Vector Index
Hailin Zhang, Yujing Wang, Qi Chen, Ruiheng Chang, Ting Zhang, Ziming Miao, Yingyan Hou, Yang Ding, Xupeng Miao, Haonan Wang, Bochen Pang, Yuefeng Zhan, Hao Sun, Weiwei Deng, Qi Zhang, Fan Yang, Xing Xie, Mao Yang, Bin Cui
NeurIPS 2023 – May 2023 [paper] [code]
Continual Learning for Generative Retrieval over Dynamic Corpora
Jiangui Chen, Ruqing Zhang, Jiafeng Guo, Maarten de Rijke, Wei Chen, Yixing Fan, Xueqi Cheng
CIKM 2023 - Aug 2023 [paper]
Learning to Rank in Generative Retrieval
Yongqi Li, Nan Yang, Liang Wang, Furu Wei, Wenjie Li
arXiv – Jun 2023 [paper]
Large Language Models are Built-in Autoregressive Search Engines
Noah Ziems, Wenhao Yu, Zhihan Zhang, Meng Jiang
ACL Findings 2023 – May 2023 [paper]
Multiview Identifiers Enhanced Generative Retrieval
Yongqi Li, Nan Yang, Liang Wang, Furu Wei, Wenjie Li
ACL 2023 – May 2023 [paper]
How Does Generative Retrieval Scale to Millions of Passages?
Ronak Pradeep, Kai Hui, Jai Gupta, Adam D. Lelkes, Honglei Zhuang, Jimmy Lin, Donald Metzler, Vinh Q. Tran
arXiv – May 2023 [paper]
TOME: A Two-stage Approach for Model-based Retrieval
Ruiyang Ren, Wayne Xin Zhao, Jing Liu, Hua Wu, Ji-Rong Wen, Haifeng Wang
ACL 2023 - May 2023 [paper]
Understanding Differential Search Index for Text Retrieval
Xiaoyang Chen, Yanjiang Liu, Ben He, Le Sun, Yingfei Sun
ACL Findings 2023 - May 2023 [paper]
Learning to Tokenize for Generative Retrieval
Weiwei Sun, Lingyong Yan, Zheng Chen, Shuaiqiang Wang, Haichao Zhu, Pengjie Ren, Zhumin Chen, Dawei Yin, Maarten de Rijke, Zhaochun Ren
arXiv – Apr 2023 [paper]
DynamicRetriever: A Pre-trained Model-based IR System Without an Explicit Index
Yu-Jia Zhou, Jing Yao, Zhi-Cheng Dou, Ledell Wu, Ji-Rong Wen
Machine Intelligence Research – Jan 2023 [paper]
DSI++: Updating Transformer Memory with New Documents
Sanket Vaibhav Mehta, Jai Gupta, Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Jinfeng Rao, Marc Najork, Emma Strubell, Donald Metzler
arXiv – Dec 2022 [paper]
CodeDSI: Differentiable Code Search
Usama Nadeem, Noah Ziems, Shaoen Wu
arXiv – Oct 2022 [paper]
Contextualized Generative Retrieval
Hyunji Lee, Jaeyoung Kim, Hoyeon Chang, Hanseok Oh, Sohee Yang, Vlad Karpukhin, Yi Lu, Minjoon Seo
arXiv – Oct 2022 [paper]
Transformer Memory as a Differentiable Search Index
Yi Tay, Vinh Q. Tran, Mostafa Dehghani, Jianmo Ni, Dara Bahri, Harsh Mehta, Zhen Qin, Kai Hui, Zhe Zhao, Jai Gupta, Tal Schuster, William W. Cohen, Donald Metzler
Neurips 2022 – Oct 2022 [paper] [Video] [third-party code]
A Neural Corpus Indexer for Document Retrieval
Wang等。
Arxiv 2022 [paper]
Bridging the Gap Between Indexing and Retrieval for Differentiable Search Index with Query Generation
Shengyao Zhuang, Houxing Ren, Linjun Shou, Jian Pei, Ming Gong, Guido Zuccon, and Daxin Jiang
Arxiv 2022 [paper] [Code]
DynamicRetriever: A Pre-training Model-based IR System with Neither Sparse nor Dense Index
Zhou et al
Arxiv 2022 [paper]
Ultron: An Ultimate Retriever on Corpus with a Model-based Indexer
Zhou et al
Arxiv 2022 [paper]
Planning Ahead in Generative Retrieval: Guiding Autoregressive Generation through Simultaneous Decoding
Hansi Zeng ,Chen Luo ,Hamed Zamani
arXiv – Apr 2024 [paper] [Code]
NOVO: Learnable and Interpretable Document Identifiers for Model-Based IR
Zihan Wang, Yujia Zhou, Yiteng Tu, Zhicheng Dou
CIKM 2023 - October 2023 [paper]
Generative Retrieval as Multi-Vector Dense Retrieval
Shiguang Wu, Wenda Wei, Mengqi Zhang, Zhumin Chen, Jun Ma, Zhaochun Ren, Maarten de Rijke, Pengjie Ren
SIGIR 2024 - March 24 [paper] [Code]
Re3val: Reinforced and Reranked Generative Retrieval
EuiYul Song, Sangryul Kim, Haeju Lee, Joonkee Kim, James Thorne
EACL Findings 2023 – Jan 24 [paper]
GLEN: Generative Retrieval via Lexical Index Learning
Sunkyung Lee, Minjin Choi, Jongwuk Lee
EMNLP 2023 - December 23 [paper] [Code]
Enhancing Generative Retrieval with Reinforcement Learning from Relevance Feedback
Yujia Zhou, Zhicheng Dou, Ji-Rong Wen
EMNLP 2023 - December 23 [paper]
Generative Retrieval with Large Language Models
匿名的
ICLR 24 – October 23 [paper]
Semantic-Enhanced Differentiable Search Index Inspired by Learning Strategies
Yubao Tang, Ruqing Zhang, Jiafeng Guo, Jiangui Chen, Zuowei Zhu, Shuaiqiang Wang, Dawei Yin, Xueqi Cheng
KDD 2023 – May 2023 [paper]
Term-Sets Can Be Strong Document Identifiers For Auto-Regressive Search Engines
Peitian Zhang, Zheng Liu, Yujia Zhou, Zhicheng Dou, Zhao Cao
arXiv – May 2023 [paper] [Code]
A Unified Generative Retriever for Knowledge-Intensive Language Tasks via Prompt Learning
Jiangui Chen, Ruqing Zhang, Jiafeng Guo, Maarten de Rijke, Yiqun Liu, Yixing Fan, Xueqi Cheng
SIGIR 2023 – Apr 2023 [paper] [Code]
CorpusBrain: Pre-train a Generative Retrieval Model for Knowledge-Intensive Language Tasks
Jiangui Chen, Ruqing Zhang, Jiafeng Guo, Yiqun Liu, Yixing Fan, Xueqi Cheng
CIKM 2022 – Aug 2022 [paper] [Code]
Autoregressive Search Engines: Generating Substrings as Document Identifiers
Michele Bevilacqua, Giuseppe Ottaviano, Patrick Lewis, Wen-tau Yih, Sebastian Riedel, Fabio Petroni
arXiv – Apr 2022 [paper] [Code]
Autoregressive Entity Retrieval
Nicola De Cao, Gautier Izacard, Sebastian Riedel, Fabio Petroni
ICLR 2021 – Oct 2020 [paper] [Code]
Data-Efficient Autoregressive Document Retrieval for Fact Verification
詹姆斯·索恩
SustaiNLP@EMNLP 2022 – Nov 2022 [paper]
GERE: Generative Evidence Retrieval for Fact Verification
Jiangui Chen, Ruqing Zhang, Jiafeng Guo, Yixing Fan, Xueqi Cheng
SIGIR 2022 [paper] [Code]
Generative Multi-hop Retrieval
Hyunji Lee, Sohee Yang, Hanseok Oh, Minjoon Seo
arXiv – Apr 2022 [paper]
Improving LLMs for Recommendation with Out-Of-Vocabulary Tokens
Ting-Ji Huang, Jia-Qi Yang, Chunxu Shen, Kai-Qi Liu, De-Chuan Zhan, Han-Jia Ye
arXiv – Jun 2024 [paper]
Plug-in Diffusion Model for Sequential Recommendation
Haokai Ma, Ruobing Xie, Lei Meng, Xin Chen, Xu Zhang, Leyu Lin, Zhanhui Kang
arXiv – Jan 2024 [paper]
Towards Graph-Aware Diffusion Modeling For Collaborative Filtering Yunqin Zhu1, Chao Wang, Hui Xiong
arXiv – Nov 2023 [paper]
RecMind: Large Language Model Powered Agent For Recommendation
Yancheng Wang, Ziyan Jiang, Zheng Chen, Fan Yang, Yingxue Zhou, Eunah Cho, Xing Fan, Xiaojiang Huang, Yanbin Lu, Yingzhen Yang
arXiv – Aug 2023 [paper]
Is ChatGPT Fair for Recommendation? Evaluating Fairness in Large Language Model Recommendation
Jizhi Zhang, Keqin Bao, Yang Zhang, Wenjie Wang, Fuli Feng, Xiangnan He
Recsys 2023 – Jul 2023 [paper]
RecFusion: A Binomial Diffusion Process for 1D Data for Recommendation
Gabriel Bénédict, Olivier Jeunen, Samuele Papa, Samarth Bhargav, Daan Odijk, Maarten de Rijke
arXiv – Jun 2023 [paper]
A First Look at LLM-Powered Generative News Recommendation
Qijiong Liu, Nuo Chen, Tetsuya Sakai, Xiao-Ming Wu
arXiv – Jun 2023 [paper]
Large Language Models as Zero-Shot Conversational Recommenders
Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, Ruobing Xie, Julian McAuley, Wayne Xin Zhao
arXiv – May 2023 [paper]
DiffuRec: A Diffusion Model for Sequential Recommendation
Zihao Li, Aixin Sun, Chenliang Li
arXiv – Apr 2023 [paper]
Diffusion Recommender Model
Wenjie Wang, Yiyan Xu, Fuli Feng, Xinyu Lin, Xiangnan He, Tat-Seng Chua
SIGIR 2023 – Apr 2023 [paper]
Blurring-Sharpening Process Models for Collaborative Filtering
Jeongwhan Choi, Seoyoung Hong, Noseong Park, Sung-Bae Cho
SIGIR 2023 – Apr 2023 [paper] [code]
Recommender Systems with Generative Retrieval
Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan Keshavan, Trung Vu, Lukasz Heldt, Lichan Hong, Yi Tay, Vinh Q. Tran, Jonah Samost, Maciej Kula, Ed H. Chi, Maheswaran Sathiamoorthy
non-archival – Mar 2023 [paper]
Pre-train, Prompt and Recommendation: A Comprehensive Survey of Language Modelling Paradigm Adaptations in Recommender Systems
Peng Liu, Lemei Zhang, Jon Atle Gulla
arXiv – Feb 2023 [paper]
Generative Slate Recommendation with Reinforcement Learning
Romain Deffayet, Thibaut Thonet, Jean-Michel Renders, and Maarten de Rijke
WSDM 2023 – Feb 2023 [paper]
Recommendation via Collaborative Diffusion Generative Model
Joojo Walker, Ting Zhong, Fengli Zhang, Qiang Gao, Fan Zhou
KSEM 2022 – Aug 2022 [paper]
DocGraphLM: Documental Graph Language Model for Information Extraction
Dongsheng Wang, Zhiqiang Ma, Armineh Nourbakhsh, Kang Gu, Sameena Shah
arXiv – Jan 2024 [paper]
KBFormer: A Diffusion Model for Structured Entity Completion
Ouail Kitouni, Niklas Nolte, James Hensman, Bhaskar Mitra
arXiv – Dec 2023 [paper]
From Retrieval to Generation: Efficient and Effective Entity Set Expansion
Shulin Huang, Shirong Ma, Yangning Li, Yinghui Li, Hai-Tao Zheng, Yong Jiang
arXiv – Apr 2023 [paper]
Crawling the Internal Knowledge-Base of Language Models
Roi Cohen, Mor Geva, Jonathan Berant, Amir Globerson
arXiv – Jan 2023 [paper]
Prompt Tuning or Fine-Tuning - Investigating Relational Knowledge in Pre-Trained Language Models
Leandra Fichtel, Jan-Christoph Kalo, Wolf-Tilo Balke
AKBC 2021 – [paper]
语言模型作为知识基础?
Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H. Miller, Sebastian Riedel
EMNLP 2019 – Sep 2019 [paper]
Although some of these are not accompanied by a paper, they might be useful to other Generative IR researchers for empirical studies or interface design considerations.
⚡ Gemini Dec 2023 [live] ⚡️ factiverse Jun 2023 [live] ⚡️ devmarizer Mar 2023 [live] ⚡️ TaxGenius Mar 2023 [live] ⚡️ doc-gpt Mar 2023 [live] ⚡️ book-gpt Feb 2023 [live] ⚡️ Neeva Feb 2023 [live] ⚡️ Golden Retriever Feb 2023 [live] ⚡️ Bing – Prometheus Feb 2023 [waitlist] ⚡️ Google – Bard Feb 2023 [only in certain countries] ⚡️ Paper QA Feb 2023 [code] [demo] ⚡️ DocsGPT Feb 2023 [live] [code] ⚡️ DocAsker Jan 2023 [live] ⚡️ Lexii.ai Jan 2023 [live] ⚡️ YOU.com Dec 2022 [live] ⚡️ arXivGPT Dec 2022 [Chrome extension] ⚡️ GPT Index Nov 2022 [API] ⚡️ BlenderBot Aug 2022 [live (USA)] [model weights] [code] [paper1] [paper2] ⚡️ PHIND date? [live] ⚡️ Perplexity date? [live] ⚡️ Galactica date? [demo] [API] [paper] ⚡️ Elicit date? [live] ⚡️ ZetaAlpha date? [live] uses OpenAI API
To get just the paper titles do grep '**' README.md | sed 's/**//g'