[中文 | английский]
Этот проект представляет собой реализацию модели BERT и связанных с ними нисходящими задачами на основе фреймворка Pytorch. Это также включает в себя подробное объяснение модели BERT и принципы каждой основной задачи.
Берт: предварительное обучение глубоких двунаправленных трансформаторов для понимания языка
Прежде чем научиться использовать этот проект, вам необходимо знать соответствующие принципы трансформатора по этим тремя примерами: перевод, классификация, генерация связи.
bert_base_chinese содержит модель предварительного обучения Bert_base_chinese
bert_base_uncased_english содержит модель предварительного обучения Bert_base_uncased_english и файлы конфигурации
data содержат все наборы данных, используемые каждой нижней задачей.
SingleSentenceClassification -это китайский набор классификации из 15 классов Toutiao.PairSentenceClassification -это набор данных MNLI (мульти-жанрский корпус вывода естественного языка).MultipeChoice - это набор данных SWAG.SQuAD является набором данных Squad-V1.1.WikiText -это Wikipedia English Corpus для предварительного обучения.SongCi -это данные Songci для предварительной тренировки китайской моделиChineseNER - это набор данных, используемый для обучения китайского признания объекта. model - это реализация каждого модуля
BasicBert содержит базовую реализацию BERTMyTransformer.py Self Catterment реализация.BertEmbedding.py входной внедрение реализации.BertConfig.py используется для импорта конфигурации config.json .Bert.py Реализация Берта.DownstreamTasks содержит все реализации задач вниз по течениюBertForSentenceClassification.py Предложения (ы). Реализация классификации.BertForMultipleChoice.py Реализация с множественным выбором.BertForQuestionAnswering.py Вопрос Ответ (Text Span) реализация.BertForNSPAndMLM.py NSP и реализация MLM.BertForTokenClassification.py Token Classification реализация. Внедрение Task обучения и вывода для каждой нижней задачи
TaskForSingleSentenceClassification.py Taks реализации классификации отдельных предложений, такой как классификация предложений.TaskForPairSentence.py Задача о реализации классификации предложений парных предложений, такая как MNLI.TaskForMultipleChoice.py Задача реализации с множественным выбором, такой как SWAG.TaskForSQuADQuestionAnswering.py OS Task OS Ответ ответа (текстовый SPAN), такая как Squad.TaskForPretraining.py Задачи реализации NSP ANS MLM.TaskForChineseNER.py Задача китайской названной реализации признания организации. test случаи каждой нисходящей задачи.
utils
data_helpers.py - это предварительная обработка данных и модуль построения наборов данных каждой нижней задачи;log_helper.py - это модуль журнала печати.creat_pretraining_data.py используется для построения набора данных задачи предварительного обучения BERT. Python 3.6 и версия пакетов
torch == 1.5 . 0
torchtext == 0.6 . 0
torchvision == 0.6 . 0
transformers == 4.5 . 1
numpy == 1.19 . 5
pandas == 1.1 . 5
scikit - learn == 0.24 . 0
tqdm == 4.61 . 0 Загрузка каждого набора данных и соответствующей модели BERT предварительно подготовленной (если пуст) и поместите его в соответствующий каталог. Для получения подробной информации см. Файл README.md в каждом каталоге данных ( data ).
Переход к каталогу Tasks и запустите модель.
Структура модели и обработка данных:

python TaskForSingleSentenceClassification . pyРезультат:
- - INFO : Epoch : 0 , Batch [ 0 / 4186 ], Train loss : 2.862 , Train acc : 0.125
- - INFO : Epoch : 0 , Batch [ 10 / 4186 ], Train loss : 2.084 , Train acc : 0.562
- - INFO : Epoch : 0 , Batch [ 20 / 4186 ], Train loss : 1.136 , Train acc : 0.812
- - INFO : Epoch : 0 , Batch [ 30 / 4186 ], Train loss : 1.000 , Train acc : 0.734
...
- - INFO : Epoch : 0 , Batch [ 4180 / 4186 ], Train loss : 0.418 , Train acc : 0.875
- - INFO : Epoch : 0 , Train loss : 0.481 , Epoch time = 1123.244 s
...
- - INFO : Epoch : 9 , Batch [ 4180 / 4186 ], Train loss : 0.102 , Train acc : 0.984
- - INFO : Epoch : 9 , Train loss : 0.100 , Epoch time = 1130.071 s
- - INFO : Accurcay on val 0.884
- - INFO : Accurcay on val 0.888Структура модели и обработка данных:

python TaskForPairSentenceClassification . pyРезультат:
- - INFO : Epoch : 0 , Batch [ 0 / 17181 ], Train loss : 1.082 , Train acc : 0.438
- - INFO : Epoch : 0 , Batch [ 10 / 17181 ], Train loss : 1.104 , Train acc : 0.438
- - INFO : Epoch : 0 , Batch [ 20 / 17181 ], Train loss : 1.129 , Train acc : 0.250
- - INFO : Epoch : 0 , Batch [ 30 / 17181 ], Train loss : 1.063 , Train acc : 0.375
...
- - INFO : Epoch : 0 , Batch [ 17180 / 17181 ], Train loss : 0.367 , Train acc : 0.909
- - INFO : Epoch : 0 , Train loss : 0.589 , Epoch time = 2610.604 s
...
- - INFO : Epoch : 9 , Batch [ 0 / 17181 ], Train loss : 0.064 , Train acc : 1.000
- - INFO : Epoch : 9 , Train loss : 0.142 , Epoch time = 2542.781 s
- - INFO : Accurcay on val 0.827
- - INFO : Accurcay on val 0.830Структура модели и обработка данных:



python TaskForMultipleChoice . pyРезультат:
[ 2021 - 11 - 11 21 : 32 : 50 ] - INFO : Epoch : 0 , Batch [ 0 / 4597 ], Train loss : 1.433 , Train acc : 0.250
[ 2021 - 11 - 11 21 : 32 : 58 ] - INFO : Epoch : 0 , Batch [ 10 / 4597 ], Train loss : 1.277 , Train acc : 0.438
[ 2021 - 11 - 11 21 : 33 : 01 ] - INFO : Epoch : 0 , Batch [ 20 / 4597 ], Train loss : 1.249 , Train acc : 0.438
......
[ 2021 - 11 - 11 21 : 58 : 34 ] - INFO : Epoch : 0 , Batch [ 4590 / 4597 ], Train loss : 0.489 , Train acc : 0.875
[ 2021 - 11 - 11 21 : 58 : 36 ] - INFO : Epoch : 0 , Batch loss : 0.786 , Epoch time = 1546.173 s
[ 2021 - 11 - 11 21 : 28 : 55 ] - INFO : Epoch : 0 , Batch [ 0 / 4597 ], Train loss : 1.433 , Train acc : 0.250
[ 2021 - 11 - 11 21 : 30 : 52 ] - INFO : He is throwing darts at a wall . A woman , squats alongside flies side to side with his gun . ## False
[ 2021 - 11 - 11 21 : 30 : 52 ] - INFO : He is throwing darts at a wall . A woman , throws a dart at a dartboard . ## False
[ 2021 - 11 - 11 21 : 30 : 52 ] - INFO : He is throwing darts at a wall . A woman , collapses and falls to the floor . ## False
[ 2021 - 11 - 11 21 : 30 : 52 ] - INFO : He is throwing darts at a wall . A woman , is standing next to him . ## True
[ 2021 - 11 - 11 21 : 30 : 52 ] - INFO : Accuracy on val 0.794Структура модели и обработка данных:




python TaskForSQuADQuestionAnswering . pyРезультат:
[ 2022 - 01 - 02 14 : 42 : 17 ]缓存文件 ~ / BertWithPretrained / data / SQuAD / dev - v1_128_384_64 . pt 不存在,重新处理并缓存!
[ 2022 - 01 - 02 14 : 42 : 17 ] - DEBUG : << << << << 进入新的example >> > >> >> >>
[ 2022 - 01 - 02 14 : 42 : 17 ] - DEBUG : ## 正在预处理数据 utils.data_helpers is_training = False
[ 2022 - 01 - 02 14 : 42 : 17 ] - DEBUG : ## 问题 id: 56be5333acb8001400a5030d
[ 2022 - 01 - 02 14 : 42 : 17 ] - DEBUG : ## 原始问题 text: Which performers joined the headliner during the Super Bowl 50 halftime show?
[ 2022 - 01 - 02 14 : 42 : 17 ] - DEBUG : ## 原始描述 text: CBS broadcast Super Bowl 50 in the U.S., and charged an average of $5 million for a ....
[ 2022 - 01 - 02 14 : 42 : 17 ] - DEBUG : ## 上下文长度为:87, 剩余长度 rest_len 为 : 367
[ 2022 - 01 - 02 14 : 42 : 17 ] - DEBUG : ## input_tokens: ['[CLS]', 'which', 'performers', 'joined', 'the', 'headline', '##r', 'during', 'the', ...]
[ 2022 - 01 - 02 14 : 42 : 17 ] - DEBUG : ## input_ids:[101, 2029, 9567, 2587, 1996, 17653, 2099, 2076, 1996, 3565, 4605, 2753, 22589, 2265, 1029, 102, 6568, ....]
[ 2022 - 01 - 02 14 : 42 : 17 ] - DEBUG : ## segment ids:[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...]
[ 2022 - 01 - 02 14 : 42 : 17 ] - DEBUG : ## orig_map:{16: 0, 17: 1, 18: 2, 19: 3, 20: 4, 21: 5, 22: 6, 23: 7, 24: 7, 25: 7, 26: 7, 27: 7, 28: 8, 29: 9, 30: 10,....}
[ 2022 - 01 - 02 14 : 42 : 17 ] - DEBUG : == == == == == == == == == == ==
....
[ 2022 - 01 - 02 15 : 13 : 50 ] - INFO : Epoch : 0 , Batch [ 810 / 7387 ] Train loss : 0.998 , Train acc : 0.708
[ 2022 - 01 - 02 15 : 13 : 55 ] - INFO : Epoch : 0 , Batch [ 820 / 7387 ] Train loss : 1.130 , Train acc : 0.708
[ 2022 - 01 - 02 15 : 13 : 59 ] - INFO : Epoch : 0 , Batch [ 830 / 7387 ] Train loss : 1.960 , Train acc : 0.375
[ 2022 - 01 - 02 15 : 14 : 04 ] - INFO : Epoch : 0 , Batch [ 840 / 7387 ] Train loss : 1.933 , Train acc : 0.542
......
[ 2022 - 01 - 02 15 : 15 : 27 ] - INFO : ### Quesiotn: [CLS] when was the first university in switzerland founded..
[ 2022 - 01 - 02 15 : 15 : 27 ] - INFO : ## Predicted answer: 1460
[ 2022 - 01 - 02 15 : 15 : 27 ] - INFO : ## True answer: 1460
[ 2022 - 01 - 02 15 : 15 : 27 ] - INFO : ## True answer idx: (tensor(46, tensor(47))
[ 2022 - 01 - 02 15 : 15 : 27 ] - INFO : ### Quesiotn: [CLS] how many wards in plymouth elect two councillors?
[ 2022 - 01 - 02 15 : 15 : 27 ] - INFO : ## Predicted answer: 17 of which elect three .....
[ 2022 - 01 - 02 15 : 15 : 27 ] - INFO : ## True answer: three
[ 2022 - 01 - 02 15 : 15 : 27 ] - INFO : ## True answer idx: (tensor(25, tensor(25))运行结束后 , data/SQuAD目录中会生成一个名为best_result.json的预测文件 , 此时只需要切换到该目录下 , 并运行以下代码即可得到在dev-v1.1.json的测试结果 :
python evaluate - v1 . 1. py dev - v1 . 1.j son best_result . json
"exact_match" : 80.879848628193 , "f1" : 88.338575234135Структура модели и обработка данных:


if __name__ == '__main__' :
config = ModelConfig ()
train ( config )
sentences_1 = [ "I no longer love her, true, but perhaps I love her." ,
"Love is so short and oblivion so long." ]
sentences_2 = [ "我住长江头,君住长江尾。" ,
"日日思君不见君,共饮长江水。" ,
"此水几时休,此恨何时已。" ,
"只愿君心似我心,定不负相思意。" ]
inference ( config , sentences_2 , masked = False , language = 'zh' )Результат:
- INFO : ## 成功载入已有模型进行推理……
- INFO : ### 原始:我住长江头,君住长江尾。
- INFO : ## 掩盖:我住长江头,[MASK]住长[MASK]尾。
- INFO : ## 预测:我住长江头,君住长河尾。
- INFO : == == == == == == == == == ==
- INFO : ### 原始:日日思君不见君,共饮长江水。
- INFO : ## 掩盖:日日思君不[MASK]君,共[MASK]长江水。
- INFO : ## 预测:日日思君不见君,共饮长江水。
# ......Структура модели и обработка данных:


if __name__ == '__main__' :
config = ModelConfig ()
train ( config )
sentences = [ '智光拿出石壁拓文为乔峰详述事情始末,乔峰方知自己原本姓萧,乃契丹后族。' ,
'当乔峰问及带头大哥时,却发现智光大师已圆寂。' ,
'乔峰、阿朱相约找最后知情人康敏问完此事后,就到塞外骑马牧羊,再不回来。' ]
inference ( config , sentences )Результат обучения:
- INFO : Epoch : [ 1 / 10 ], Batch [ 620 / 1739 ], Train Loss : 0.115 , Train acc : 0.96386
- INFO : Epoch : [ 1 / 10 ], Batch [ 240 / 1739 ], Train Loss : 0.098 , Train acc : 0.96466
- INFO : Epoch : [ 1 / 10 ], Batch [ 660 / 1739 ], Train Loss : 0.087 , Train acc : 0.96435
......
- INFO :句子:在澳大利亚等西方国家改变反倾销政策中对中国的划分后,不少欧盟人士也认识到,此种划分已背离中国经济迅速发展的现实。
- INFO : 澳大利亚: LOC
- INFO : 中国: LOC
- INFO : 欧盟: LOC
- INFO : 中国: LOC
......
precision recall f1 - score support
O 1.00 0.99 1.00 97640
B - ORG 0.86 0.93 0.89 984
B - LOC 0.94 0.93 0.94 1934
B - PER 0.97 0.97 0.97 884
I - ORG 0.90 0.96 0.93 3945
I - LOC 0.91 0.95 0.93 2556
I - PER 0.99 0.98 0.98 1714
accuracy 0.99 109657
macro avg 0.94 0.96 0.95 109657
weighted avg 0.99 0.99 0.99 109657Результат вывода:
- INFO : 句子:智光拿出石壁拓文为乔峰详述事情始末,乔峰方知自己原本姓萧,乃契丹后族。
- INFO : 智光: PER
- INFO : 乔峰: PER
- INFO : 乔峰: PER
- INFO : 萧: PER
- INFO : 丹: PER
......