Blinkid Android SDK позволяет вам создать фантастический опыт работы в вашем приложении Android.
С помощью одного быстрого сканирования ваши пользователи смогут извлекать информацию из своих удостоверений личности, паспортов, водительских прав и практически любого другого идентификатора, выдаваемого правительствами.
Blinkid есть:
Чтобы увидеть все эти функции на работе, скачать наше бесплатное демонстрационное приложение:
Чувствуете себя готово к взломе с интеграцией? Сначала убедитесь, что мы поддерживаем ваш тип документа ➡ Полный список. А затем следуйте указаниям ниже.
UISettings )RecognizerRunnerFragment )RecognizerRunnerViewString (анализ)BlinkIdUISettings и BlinkIdOverlayControllerDocumentUISettingsLegacyDocumentVerificationUISettingsRecognizerRunner и RecognizerRunnerViewRecognizer и RecognizerBundleRecognizerRecognizerBundleRecognizer между действиямиlibc++_shared.soYes . RecognizerRunnerFragment и встроенный контроллер окладок в вашей деятельности в рамках вашей деятельности В вашем build.gradle добавьте список Blinkid Maven в список репозиториев
repositories {
maven { url 'https://maven.microblink.com' }
}
Добавьте Blinkid в качестве зависимости и убедитесь, что transitive установлен на True
dependencies {
implementation('com.microblink:blinkid:6.12.0@aar') {
transitive = true
}
}
Android Studio должна автоматически импортировать Javadoc из Maven Deving. Если этого не произойдет, вы можете сделать это вручную, выполнив эти шаги:
External Libraries (обычно это последняя запись в представлении проекта)blinkid-6.12.0 , щелкните правой кнопкой мыши и выберите Library Properties...Library Properties+ в нижнем левом углу окна (та, которая содержит + с маленьким глобусом)https://blinkid.github.io/blinkid-android/OK Действующий лицензионный ключ требуется для инициализации сканирования. После регистрации вы можете запросить бесплатный лицензионный ключ для пробной лицензии в Hub MicroBlink Developer. Лицензия обязана для пакетирования имени вашего приложения, поэтому, пожалуйста, убедитесь, что вы введите правильное имя пакета, когда их спросили.
Загрузите файл лицензии и поместите его в папку активов вашего приложения. Обязательно установите лицензионный ключ перед использованием любых других классов из SDK, в противном случае вы получите исключение времени выполнения.
Мы рекомендуем вам расширить класс приложений Android и установить лицензию в обратном вызове Oncreate, как это:
public class MyApplication extends Application {
@ Override
public void onCreate () {
MicroblinkSDK . setLicenseFile ( "path/to/license/file/within/assets/dir" , this );
}
} public class MyApplication : Application () {
override fun onCreate () {
MicroblinkSDK .setLicenseFile( " path/to/license/file/within/assets/dir " , this )
}
} В вашей основной деятельности определите и создайте объект ActivityResultLauncher , переопределив метод onActivityResult . Как один из OneSideDocumentScan так и TwoSideDocumentScan и могут использоваться взаимозаменяемыми без различий в реализации. Единственное функциональное различие состоит в том, что OneSideDocumentScan сканирует только одну сторону документа и что TwoSideDocumentScan сканирует более одной стороны документа.
ActivityResultLauncher < Void > resultLauncher = registerForActivityResult (
new TwoSideDocumentScan (),
twoSideScanResult -> {
ResultStatus resultScanStatus = twoSideScanResult . getResultStatus ();
if ( resultScanStatus == ResultStatus . FINISHED ) {
// code after a successful scan
// use result.getResult() for fetching results, for example:
String firstName = twoSideScanResult . getResult (). getFirstName (). value ();
} else if ( resultScanStatus == ResultStatus . CANCELLED ) {
// code after a cancelled scan
} else if ( resultScanStatus == ResultStatus . EXCEPTION ) {
// code after a failed scan
}
}
); private val resultLauncher =
registerForActivityResult( TwoSideDocumentScan ()) { twoSideScanResult : TwoSideScanResult ->
when (twoSideScanResult.resultStatus) {
ResultStatus . FINISHED -> {
// code after a successful scan
// use twoSideScanResult.result for fetching results, for example:
val firstName = twoSideScanResult.result?.firstName?.value()
}
ResultStatus . CANCELLED -> {
// code after a cancelled scan
}
ResultStatus . EXCEPTION -> {
// code after a failed scan
}
else -> {}
}
}@Composable
fun createLauncher (): ActivityResultLauncher < Void ?> {
return rememberLauncherForActivityResult( TwoSideDocumentScan ()) { twoSideScanResult : TwoSideScanResult ->
when (twoSideScanResult.resultStatus) {
ResultStatus . FINISHED -> {
// code after a successful scan
// use twoSideScanResult.result for fetching results, for example:
val firstName = twoSideScanResult.result?.firstName?.value()
}
ResultStatus . CANCELLED -> {
// code after a cancelled scan
}
ResultStatus . EXCEPTION -> {
// code after a failed scan
}
else -> {}
}
}
} После сканирования, result , который является либо OneSideScanResult , либо экземпляр объекта TwoSideScanResult , будет обновлен. Вы можете определить, что происходит с данными в переопределении функции onActivityResult (код Kotlin также переопределяет эту функцию, но она неявна). Результаты доступны в методе twoSideScanResult.getResult() ( twoSideScanResult.result в Kotlin).
Начните процесс сканирования, вызывая ActivityResultObject и вызов ActivityResultLauncher.launch :
// method within MyActivity from previous step
public void startScanning () {
// Start scanning
resultLauncher . launch ( null );
} // method within MyActivity from previous step
public fun startScanning () {
// Start scanning
resultLauncher.launch()
} // within @Composable function or setContent block
val resultLauncher = createLauncher()
resultLauncher.launch() Результаты будут доступны в обратных вызовах, которые определены в ActivityResultObject , который был определен на предыдущем этапе.
Blinkid требует Android API уровня 21 или новее.
Резолюция предварительного просмотра камеры также имеет значение. Чтобы выполнить успешное сканирование, разрешение предварительного просмотра камеры должно быть не менее 720p. Обратите внимание, что разрешение предварительного просмотра камеры не совпадает с разрешением записи видео.
Blinkid распространяется с двумя библиотечными двоиками ARMV7 и ARM64 .
Blinkid - это нативная библиотека, написанная в C ++ и доступная для нескольких платформ. Из -за этого Blinkid не может работать на устройствах с неясными аппаратными архитектурами. Мы собрали нативный код Blinkid только для самого популярного Android ABIS.
Даже перед настройкой лицензионного ключа вы должны проверить, поддерживается ли Blinkid на текущем устройстве (см. Следующий раздел: Проверка совместимости ). Попытка вызвать любой метод из SDK, который опирается на собственный код, такой как проверка лицензий, на устройстве с неподдерживаемой архитектурой ЦП, будет сбит ваше приложение.
Если вы объединяете Blinkid Library с другими библиотеками, которые содержат собственный код в вашем приложении, убедитесь, что вы соответствуете архитектурам всех местных библиотек.
Для получения дополнительной информации см. Раздел «Соображения архитектуры процессора».
Вот как вы можете проверить, поддерживается ли Blinkid на устройстве:
// check if BlinkID is supported on the device,
RecognizerCompatibilityStatus status = RecognizerCompatibility . getRecognizerCompatibilityStatus ( this );
if ( status == RecognizerCompatibilityStatus . RECOGNIZER_SUPPORTED ) {
Toast . makeText ( this , "BlinkID is supported!" , Toast . LENGTH_LONG ). show ();
} else if ( status == RecognizerCompatibilityStatus . NO_CAMERA ) {
Toast . makeText ( this , "BlinkID is supported only via Direct API!" , Toast . LENGTH_LONG ). show ();
} else if ( status == RecognizerCompatibilityStatus . PROCESSOR_ARCHITECTURE_NOT_SUPPORTED ) {
Toast . makeText ( this , "BlinkID is not supported on current processor architecture!" , Toast . LENGTH_LONG ). show ();
} else {
Toast . makeText ( this , "BlinkID is not supported! Reason: " + status . name (), Toast . LENGTH_LONG ). show ();
} // check if _BlinkID_ is supported on the device,
when ( val status = RecognizerCompatibility .getRecognizerCompatibilityStatus( this )) {
RecognizerCompatibilityStatus . RECOGNIZER_SUPPORTED -> {
Toast .makeText( this , " BlinkID is supported! " , Toast . LENGTH_LONG ).show()
}
RecognizerCompatibilityStatus . NO_CAMERA -> {
Toast .makeText( this , " BlinkID is supported only via Direct API! " , Toast . LENGTH_LONG ).show()
}
RecognizerCompatibilityStatus . PROCESSOR_ARCHITECTURE_NOT_SUPPORTED -> {
Toast .makeText( this , " BlinkID is not supported on current processor architecture! " , Toast . LENGTH_LONG ).show()
}
else -> {
Toast .makeText( this , " BlinkID is not supported! Reason: " + status.name, Toast . LENGTH_LONG ).show()
}
}Некоторые узнаватели требуют камеры с автофокусом. Если вы попробуете использовать их на устройстве, которое не поддерживает AutoFocus, вы получите ошибку. Чтобы предотвратить это, вы можете проверить, требует ли распознаватель автофокусировку, вызывая его метод AUTOFOCUS.
Если у вас уже есть массив распознавателей, вы можете легко отфильтровать распознатели, которые требуют автофокусировки с массива, используя следующий фрагмент кода:
Recognizer [] recArray = ...;
if (! RecognizerCompatibility . cameraHasAutofocus ( CameraType . CAMERA_BACKFACE , this )) {
recArray = RecognizerUtils . filterOutRecognizersThatRequireAutofocus ( recArray );
} var recArray : Array < Recognizer > = .. .
if ( ! RecognizerCompatibility .cameraHasAutofocus( CameraType . CAMERA_BACKFACE , this )) {
recArray = RecognizerUtils .filterOutRecognizersThatRequireAutofocus(recArray)
}Вы можете интегрировать Blinkid в свое приложение пятью различными способами, в зависимости от вашего варианта использования и потребностей настройки:
OneSideDocumentScan и TwoSideDocumentScan ) - SDK обрабатывает все, и вам просто нужно начать нашу встроенную деятельность и обрабатывать результаты, без параметров настройкиUISettings )-SDK обрабатывает большую часть работы, вам просто нужно определить распознавание, настройки, начать нашу встроенную активность и обрабатывать результаты, параметры настройки ограниченыRecognizerRunnerFragment )-повторное использование сканирования UX из нашей встроенной деятельности в вашей собственной деятельностиRecognizerRunnerView ) - SDK обрабатывает управление камерой, в то время как вам нужно реализовать полностью пользовательское сканирование UXRecognizerRunner ) - SKD обрабатывает только распознавание, в то время как вы должны предоставить его изображениями, либо с камеры, либо из файла OneSideDocumentScan и TwoSideDocumentScan ) OneSideDocumentScan и TwoSideDocumentScan -это классы, которые содержат все необходимые определения настройки, чтобы быстро запустить встроенные мероприятия SDK. Это позволяет пользователю пропустить все шаги настройки, такие как UISettings и RecognizerBundle , и идти непосредственно на сканирование.
Как показано при выполнении вашего первого сканирования, требуется только определение слушателя результата, чтобы определить, что произойдет с результатами сканирования, и вызов фактической функции сканирования.
UISettings ) UISettings -это класс, который содержит все необходимые настройки для встроенных сканирования SDK. Он настраивает поведение, строки, строки, значки и другие элементы пользовательского интерфейса. Вы должны использовать ActivityRunner , чтобы запустить активность сканирования, настроенную на UISettings , показанные в примере ниже.
Мы предоставляем несколько классов UISettings , специализируемые на различных сценариях сканирования. Каждый объект UISettings обладает свойствами, которые могут быть изменены с помощью соответствующих методов сеттера. Например, вы можете настроить настройки камеры с помощью setCameraSettings Metod.
Все доступные классы UISettings перечислены здесь.
В вашей основной деятельности создайте объекты распознавания, которые будут выполнять распознавание изображений, настраивать их и помещать их в объект распознавания. Здесь вы можете увидеть больше информации о доступных узнавателях и RecognizerBundle .
Например, чтобы сканировать поддерживаемый документ, настройте свой распознаватель таким образом:
public class MyActivity extends Activity {
private BlinkIdMultiSideRecognizer mRecognizer ;
private RecognizerBundle mRecognizerBundle ;
@ Override
protected void onCreate ( Bundle bundle ) {
super . onCreate ( bundle );
// setup views, as you would normally do in onCreate callback
// create BlinkIdMultiSideRecognizer
mRecognizer = new BlinkIdMultiSideRecognizer ();
// bundle recognizers into RecognizerBundle
mRecognizerBundle = new RecognizerBundle ( mRecognizer );
}
} public class MyActivity : Activity () {
private lateinit var mRecognizer : BlinkIdMultiSideRecognizer
private lateinit var mRecognizerBundle : RecognizerBundle
override fun onCreate ( bundle : Bundle ) {
// setup views, as you would normally do in onCreate callback
// create BlinkIdMultiSideRecognizer
mRecognizer = BlinkIdMultiSideRecognizer ()
// build recognizers into RecognizerBundle
mRecognizerBundle = RecognizerBundle (mRecognizer)
}
} Начальный процесс распознавания путем создания BlinkIdUISettings и вызыв ActivityRunner.startActivityForResult .
// method within MyActivity from previous step
public void startScanning () {
// Settings for BlinkIdActivity
BlinkIdUISettings settings = new BlinkIdUISettings ( mRecognizerBundle );
// tweak settings as you wish
// Start activity
ActivityRunner . startActivityForResult ( this , MY_REQUEST_CODE , settings );
} // method within MyActivity from previous step
public fun startScanning () {
// Settings for BlinkIdActivity
val settings = BlinkIdUISettings (mRecognizerBundle)
// tweak settings as you wish
// Start activity
ActivityRunner .startActivityForResult( this , MY_REQUEST_CODE , settings)
} onActivityResult будет вызван в вашей деятельности после завершения сканирования, здесь вы можете получить результаты сканирования.
@ Override
protected void onActivityResult ( int requestCode , int resultCode , Intent data ) {
super . onActivityResult ( requestCode , resultCode , data );
if ( requestCode == MY_REQUEST_CODE ) {
if ( resultCode == Activity . RESULT_OK && data != null ) {
// load the data into all recognizers bundled within your RecognizerBundle
mRecognizerBundle . loadFromIntent ( data );
// now every recognizer object that was bundled within RecognizerBundle
// has been updated with results obtained during scanning session
// you can get the result by invoking getResult on recognizer
BlinkIdMultiSideRecognizer . Result result = mRecognizer . getResult ();
if ( result . getResultState () == Recognizer . Result . State . Valid ) {
// result is valid, you can use it however you wish
}
}
}
} override protected fun onActivityResult ( requestCode : Int , resultCode : Int , data : Intent ) {
super .onActivityResult(requestCode, resultCode, data);
if (requestCode == MY_REQUEST_CODE ) {
if (resultCode == Activity . RESULT_OK && data != null ) {
// load the data into all recognizers bundled within your RecognizerBundle
mRecognizerBundle.loadFromIntent(data)
// now every recognizer object that was bundled within RecognizerBundle
// has been updated with results obtained during scanning session
// you can get the result by invoking getResult on recognizer
val result = mRecognizer.result
if (result.resultState == Recognizer . Result . State . Valid ) {
// result is valid, you can use it however you wish
}
}
}
} Для получения дополнительной информации о доступных узнавателях и RecognizerBundle , см. DisconizerBundle и доступные узнаватели.
RecognizerRunnerFragment ) Если вы хотите повторно использовать нашу встроенную деятельность UX в своей собственной деятельности, используйте RecognizerRunnerFragment . Действие, в котором будет проводиться RecognizerRunnerFragment , должна реализовать интерфейс ScanningOverlayBinder . Попытка добавить RecognizerRunnerFragment в деятельность, которая не реализует, что интерфейс приведет к ClassCastException .
ScanningOverlayBinder отвечает за возврат non-null реализации ScanningOverlay - класса, который будет управлять пользовательским интерфейсом в дополнение к RecognizerRunnerFragment . Не рекомендуется создавать собственную реализацию ScanningOverlay , вместо этого используйте одну из наших реализаций, перечисленных здесь.
Вот минимальный пример для деятельности, которая проводит RecognizerRunnerFragment :
public class MyActivity extends AppCompatActivity implements RecognizerRunnerFragment . ScanningOverlayBinder {
private BlinkIdMultiSideRecognizer mRecognizer ;
private RecognizerBundle mRecognizerBundle ;
private BlinkIdOverlayController mScanOverlay ;
private RecognizerRunnerFragment mRecognizerRunnerFragment ;
@ Override
protected void onCreate ( Bundle savedInstanceState ) {
super . onCreate ();
setContentView ( R . layout . activity_my_activity );
mScanOverlay = createOverlay ();
if ( null == savedInstanceState ) {
// create fragment transaction to replace R.id.recognizer_runner_view_container with RecognizerRunnerFragment
mRecognizerRunnerFragment = new RecognizerRunnerFragment ();
FragmentTransaction fragmentTransaction = getSupportFragmentManager (). beginTransaction ();
fragmentTransaction . replace ( R . id . recognizer_runner_view_container , mRecognizerRunnerFragment );
fragmentTransaction . commit ();
} else {
// obtain reference to fragment restored by Android within super.onCreate() call
mRecognizerRunnerFragment = ( RecognizerRunnerFragment ) getSupportFragmentManager (). findFragmentById ( R . id . recognizer_runner_view_container );
}
}
@ Override
@ NonNull
public ScanningOverlay getScanningOverlay () {
return mScanOverlay ;
}
private BlinkIdOverlayController createOverlay () {
// create BlinkIdMultiSideRecognizer
mRecognizer = new BlinkIdMultiSideRecognizer ();
// bundle recognizers into RecognizerBundle
mRecognizerBundle = new RecognizerBundle ( mRecognizer );
BlinkIdUISettings settings = new BlinkIdUISettings ( mRecognizerBundle );
return settings . createOverlayController ( this , mScanResultListener );
}
private final ScanResultListener mScanResultListener = new ScanResultListener () {
@ Override
public void onScanningDone ( @ NonNull RecognitionSuccessType recognitionSuccessType ) {
// pause scanning to prevent new results while fragment is being removed
mRecognizerRunnerFragment . getRecognizerRunnerView (). pauseScanning ();
// now you can remove the RecognizerRunnerFragment with new fragment transaction
// and use result within mRecognizer safely without the need for making a copy of it
// if not paused, as soon as this method ends, RecognizerRunnerFragments continues
// scanning. Note that this can happen even if you created fragment transaction for
// removal of RecognizerRunnerFragment - in the time between end of this method
// and beginning of execution of the transaction. So to ensure result within mRecognizer
// does not get mutated, ensure calling pauseScanning() as shown above.
}
@ Override
public void onUnrecoverableError ( @ NonNull Throwable throwable ) {
}
};
} package com.microblink.blinkid
class MainActivity : AppCompatActivity (), RecognizerRunnerFragment.ScanningOverlayBinder {
private lateinit var mRecognizer : BlinkIdMultiSideRecognizer
private lateinit var mRecognizerRunnerFragment : RecognizerRunnerFragment
private lateinit var mRecognizerBundle : RecognizerBundle
private lateinit var mScanOverlay : BlinkIdOverlayController
override fun onCreate ( savedInstanceState : Bundle ? ) {
super .onCreate(savedInstanceState)
if ( ! ::mScanOverlay.isInitialized) {
mScanOverlay = createOverlayController()
}
setContent {
this . run {
// viewBinding has to be set to 'true' in buildFeatures block of the build.gradle file
AndroidViewBinding ( RecognizerRunnerLayoutBinding ::inflate) {
mRecognizerRunnerFragment =
fragmentContainerView.getFragment< RecognizerRunnerFragment >()
}
}
}
}
override fun getScanningOverlay (): ScanningOverlay {
return mScanOverlay
}
private fun createOverlay (): BlinkIdOverlayController {
// create BlinkIdMultiSideRecognizer
val mRecognizer = BlinkIdMultiSideRecognizer ()
// bundle recognizers into RecognizerBundle
mRecognizerBundle = RecognizerBundle (mRecognizer)
val settings = BlinkIdUISettings (mRecognizerBundle)
return settings.createOverlayController( this , mScanResultListener)
}
private val mScanResultListener : ScanResultListener = object : ScanResultListener {
override fun onScanningDone ( p0 : RecognitionSuccessType ) {
// pause scanning to prevent new results while fragment is being removed
mRecognizerRunnerFragment !! .recognizerRunnerView !! .pauseScanning()
// now you can remove the RecognizerRunnerFragment with new fragment transaction
// and use result within mRecognizer safely without the need for making a copy of it
// if not paused, as soon as this method ends, RecognizerRunnerFragments continues
// scanning. Note that this can happen even if you created fragment transaction for
// removal of RecognizerRunnerFragment - in the time between end of this method
// and beginning of execution of the transaction. So to ensure result within mRecognizer
// does not get mutated, ensure calling pauseScanning() as shown above.
}
override fun onUnrecoverableError ( p0 : Throwable ) {
}
}
} Пожалуйста, обратитесь к примерам приложений, предоставленных SDK для более подробного примера, и убедитесь, что ориентация активности вашего хоста установлена на nosensor или включена изменение конфигурации (т.е. не перезапускается при изменении конфигурации). Для получения дополнительной информации проверьте раздел ориентации сканирования.
RecognizerRunnerViewВ этом разделе обсуждается, как внедрить incordizerRunnerview в вашу деятельность по сканированию и выполнить сканирование.
RecognizerRunnerView - это поле участника в вашей деятельности. Это требуется, потому что вам нужно будет передать все события жизненного цикла Activity в RecognizerRunnerView .portrait или landscape . Установка sensor как ориентацию активности сканирования запустит полный перезапуск активности при изменении ориентации устройства. Это обеспечит очень плохой пользовательский опыт, потому что камера и миганская нативная библиотека должны будут перезагружаться каждый раз. Есть меры против этого поведения, которые обсуждаются позже.onCreate вашей деятельности создайте новый RecognizerRunnerView , установите распознавание, содержащий узнаватели, которые будут использоваться представлением, определите CameraEventsListener, который будет обрабатывать обязательные события камеры, определить ScanResultListener, который будет получать вызов, когда распознавание будет завершено, а затем вызовут его метод create . После этого добавьте свои представления, которые должны быть расположены поверх вида камеры.setLifecycle , чтобы обеспечить автоматическую обработку событий жизни. Вот минимальный пример интеграции RecognizerRunnerView как единственное представление в вашей деятельности:
public class MyScanActivity extends AppCompatActivity {
private static final int PERMISSION_CAMERA_REQUEST_CODE = 42 ;
private RecognizerRunnerView mRecognizerRunnerView ;
private BlinkIdMultiSideRecognizer mRecognizer ;
private RecognizerBundle mRecognizerBundle ;
@ Override
protected void onCreate ( Bundle savedInstanceState ) {
super . onCreate ( savedInstanceState );
// create BlinkIdMultiSideRecognizer
mRecognizer = new BlinkIdMultiSideRecognizer ();
// bundle recognizers into RecognizerBundle
mRecognizerBundle = new RecognizerBundle ( mRecognizer );
// create RecognizerRunnerView
mRecognizerRunnerView = new RecognizerRunnerView ( this );
// set lifecycle to automatically call recognizer runner view lifecycle methods
mRecognizerRunnerView . setLifecycle ( getLifecycle ());
// associate RecognizerBundle with RecognizerRunnerView
mRecognizerRunnerView . setRecognizerBundle ( mRecognizerBundle );
// scan result listener will be notified when scanning is complete
mRecognizerRunnerView . setScanResultListener ( mScanResultListener );
// camera events listener will be notified about camera lifecycle and errors
mRecognizerRunnerView . setCameraEventsListener ( mCameraEventsListener );
setContentView ( mRecognizerRunnerView );
}
@ Override
public void onConfigurationChanged ( Configuration newConfig ) {
super . onConfigurationChanged ( newConfig );
// changeConfiguration is not handled by lifecycle events so call it manually
mRecognizerRunnerView . changeConfiguration ( newConfig );
}
private final CameraEventsListener mCameraEventsListener = new CameraEventsListener () {
@ Override
public void onCameraPreviewStarted () {
// this method is from CameraEventsListener and will be called when camera preview starts
}
@ Override
public void onCameraPreviewStopped () {
// this method is from CameraEventsListener and will be called when camera preview stops
}
@ Override
public void onError ( Throwable exc ) {
/**
* This method is from CameraEventsListener and will be called when
* opening of camera resulted in exception or recognition process
* encountered an error. The error details will be given in exc
* parameter.
*/
}
@ Override
@ TargetApi ( 23 )
public void onCameraPermissionDenied () {
/**
* Called in Android 6.0 and newer if camera permission is not given
* by user. You should request permission from user to access camera.
*/
requestPermissions ( new String []{ Manifest . permission . CAMERA }, PERMISSION_CAMERA_REQUEST_CODE );
/**
* Please note that user might have not given permission to use
* camera. In that case, you have to explain to user that without
* camera permissions scanning will not work.
* For more information about requesting permissions at runtime, check
* this article:
* https://developer.android.com/training/permissions/requesting.html
*/
}
@ Override
public void onAutofocusFailed () {
/**
* This method is from CameraEventsListener will be called when camera focusing has failed.
* Camera manager usually tries different focusing strategies and this method is called when all
* those strategies fail to indicate that either object on which camera is being focused is too
* close or ambient light conditions are poor.
*/
}
@ Override
public void onAutofocusStarted ( Rect [] areas ) {
/**
* This method is from CameraEventsListener and will be called when camera focusing has started.
* You can utilize this method to draw focusing animation on UI.
* Areas parameter is array of rectangles where focus is being measured.
* It can be null on devices that do not support fine-grained camera control.
*/
}
@ Override
public void onAutofocusStopped ( Rect [] areas ) {
/**
* This method is from CameraEventsListener and will be called when camera focusing has stopped.
* You can utilize this method to remove focusing animation on UI.
* Areas parameter is array of rectangles where focus is being measured.
* It can be null on devices that do not support fine-grained camera control.
*/
}
};
private final ScanResultListener mScanResultListener = new ScanResultListener () {
@ Override
public void onScanningDone ( @ NonNull RecognitionSuccessType recognitionSuccessType ) {
// this method is from ScanResultListener and will be called when scanning completes
// you can obtain scanning result by calling getResult on each
// recognizer that you bundled into RecognizerBundle.
// for example:
BlinkIdMultiSideRecognizer . Result result = mRecognizer . getResult ();
if ( result . getResultState () == Recognizer . Result . State . Valid ) {
// result is valid, you can use it however you wish
}
// Note that mRecognizer is stateful object and that as soon as
// scanning either resumes or its state is reset
// the result object within mRecognizer will be changed. If you
// need to create a immutable copy of the result, you can do that
// by calling clone() on it, for example:
BlinkIdMultiSideRecognizer . Result immutableCopy = result . clone ();
// After this method ends, scanning will be resumed and recognition
// state will be retained. If you want to prevent that, then
// you should call:
mRecognizerRunnerView . resetRecognitionState ();
// Note that reseting recognition state will clear internal result
// objects of all recognizers that are bundled in RecognizerBundle
// associated with RecognizerRunnerView.
// If you want to pause scanning to prevent receiving recognition
// results or mutating result, you should call:
mRecognizerRunnerView . pauseScanning ();
// if scanning is paused at the end of this method, it is guaranteed
// that result within mRecognizer will not be mutated, therefore you
// can avoid creating a copy as described above
// After scanning is paused, you will have to resume it with:
mRecognizerRunnerView . resumeScanning ( true );
// boolean in resumeScanning method indicates whether recognition
// state should be automatically reset when resuming scanning - this
// includes clearing result of mRecognizer
}
};
} Если свойство screenOrientation активности в AndroidManifest.xml установлено на sensor , fullSensor или аналогичный, активность будет перезапущена каждый раз, когда устройство меняет ориентацию с портрета на ландшафт и наоборот. При перезапуске деятельности будут вызваны его методы onPause , onStop и onDestroy , а затем будет создана новая деятельность заново. Это потенциальная проблема для активности сканирования, потому что в жизненном цикле он управляет как камерой, так и нативной библиотекой - перезапуск деятельности запустит как перезапуск камеры, так и нативной библиотеки. Это проблема, потому что изменение ориентации от ландшафта на портрет и наоборот будет очень медленной, что ухудшает пользовательский опыт. Мы не рекомендуем такую настройку.
В этом отношении мы рекомендуем установить вашу активность сканирования в режиме portrait или landscape и обрабатывать изменения ориентации устройства вручную. Чтобы помочь вам в этом, RecognizerRunnerView поддерживает добавление детей, которые будут вращаться независимо от screenOrientation активности. Вы добавляете представление, которое вы хотите повернуть (например, представление, которое содержит кнопки, сообщения о состоянии и т. Д.), Чтобы RecognizerRunnerView что метод addchildview. Второй параметр метода - это логический, который определяет, будет ли видение, которое вы добавляете, вращаться с помощью устройства. Чтобы определить разрешенную ориентацию, реализовать интерфейс OrientationAllowedListener и добавьте его в RecognizerRunnerView с помощью метода setOrientationAllowedListener . Это рекомендуемый способ вращения наложения камеры.
Тем не менее, если вы действительно хотите установить свойство screenOrientation на sensor или аналогичный, и хотите, чтобы Android обрабатывал изменения ориентации вашей активности сканирования, то мы рекомендуем установить свойство configChanges вашей деятельности для orientation|screenSize . Это позволит Android не перезагружать вашу деятельность при изменении ориентации устройства. Вместо этого будет вызовен метод Activity onConfigurationChanged , чтобы можно было уведомлять об изменении конфигурации. В вашей реализации этого метода вы должны назвать метод changeConfiguration of RecognizerView , чтобы он мог адаптировать свою поверхность камеры и представления ребенка к новой конфигурации.
В этом разделе будет описано, как использовать прямой API для распознавания растровых карт Android без необходимости камеры. Вы можете использовать прямой API в любом месте от вашего приложения, а не только от действий.
Производительность распознавания изображений сильно зависит от качества входных изображений. Когда используется наше управление камерой (сканирование с камеры), мы делаем все возможное, чтобы получить кадры камеры с наилучшим качеством для подержанного устройства. С другой стороны, когда используется прямой API, вам необходимо предоставить высококачественные изображения без размытия и бликов для успешного распознавания.
Bitmaps , например, из галереи. Используйте распознаваниебит или распознание.Images которые построены из пользовательских видео камер, например, при использовании собственного или стороннего управления камерой. Признание будет оптимизировано для скорости и будет полагаться на понижение времени между последовательными видео кадрами, чтобы получить наилучший возможный результат распознавания. Используйте распознаваниевидеомеаж или распознайтевидеаймажвижнизаторов.Images , когда вам нужно тщательное сканирование одиночных или нескольких изображений, которые не являются частью видеопотока, и вы хотите получить наилучшие возможные результаты от единого InputImage . Тип inputImage поступает из нашего SDK или его можно создать с помощью ImageBuilder. Используйте chancesestillimage или uncomeSeStillImageWithRecogniceers.Вот минимальный пример использования прямых API для распознавания растрового изображения Android:
public class DirectAPIActivity extends Activity {
private RecognizerRunner mRecognizerRunner ;
private BlinkIdMultiSideRecognizer mRecognizer ;
private RecognizerBundle mRecognizerBundle ;
@ Override
protected void onCreate ( Bundle savedInstanceState ) {
super . onCreate ();
// initialize your activity here
// create BlinkIdMultiSideRecognizer
mRecognizer = new BlinkIdMultiSideRecognizer ();
// bundle recognizers into RecognizerBundle
mRecognizerBundle = new RecognizerBundle ( mRecognizer );
try {
mRecognizerRunner = RecognizerRunner . getSingletonInstance ();
} catch ( FeatureNotSupportedException e ) {
Toast . makeText ( this , "Feature not supported! Reason: " + e . getReason (). getDescription (), Toast . LENGTH_LONG ). show ();
finish ();
return ;
}
mRecognizerRunner . initialize ( this , mRecognizerBundle , new DirectApiErrorListener () {
@ Override
public void onRecognizerError ( Throwable t ) {
Toast . makeText ( DirectAPIActivity . this , "There was an error in initialization of Recognizer: " + t . getMessage (), Toast . LENGTH_SHORT ). show ();
finish ();
}
});
}
@ Override
protected void onResume () {
super . onResume ();
// start recognition
Bitmap bitmap = BitmapFactory . decodeFile ( "/path/to/some/file.jpg" );
mRecognizerRunner . recognizeBitmap ( bitmap , Orientation . ORIENTATION_LANDSCAPE_RIGHT , mScanResultListener );
}
@ Override
protected void onDestroy () {
super . onDestroy ();
mRecognizerRunner . terminate ();
}
private final ScanResultListener mScanResultListener = new ScanResultListener () {
@ Override
public void onScanningDone ( @ NonNull RecognitionSuccessType recognitionSuccessType ) {
// this method is from ScanResultListener and will be called
// when scanning completes
// you can obtain scanning result by calling getResult on each
// recognizer that you bundled into RecognizerBundle.
// for example:
BlinkIdMultiSideRecognizer . Result result = mRecognizer . getResult ();
if ( result . getResultState () == Recognizer . Result . State . Valid ) {
// result is valid, you can use it however you wish
}
}
};
} ScanResultListener.OnsCanningDone вызывается для каждого входного изображения, которое вы отправляете в распознавание. Вы можете позвонить в RecognizerRunner.recognize* несколько раз с разными изображениями одного и того же документа для лучшей точности чтения, пока не получите успешный результат в методе onScanningDone слушателя. Это полезно, когда вы используете свое собственное или стороннее управление камерой.
String (анализ) Некоторые узнаватели поддерживают распознавание по String . Их можно использовать через прямой API для анализа заданной String и возврата данных, как когда они используются на входном изображении. Когда распознавание выполняется на String , нет необходимости в OCR. Входная String используется так же, как вывод OCR используется при распознавании изображения.
Распознавание по String может быть выполнено так же, как и распознавание с изображения, описанное в предыдущем разделе.
Единственное отличие состоит в том, что один из методов распознавания синглтона для распознавания из строки должен быть вызван:
RecognizerRunner Direct API Singleton - это государственная машина, которая может быть в одном из 3 штатов: OFFLINE , READY и WORKING .
RecognizerRunner Singleton, он будет в OFFLINE состоянии.RecognizerRunner , вызывая метод инициализации. Если вы называете метод initialize , в то время как RecognizerRunner не находится в OFFLINE состоянии, вы получите IllegalStateException .RecognizerRunner перейдет в READY состояние. Теперь вы можете вызвать любой из методов recognize* .recognize* RecognizerRunner перейдет в WORKING состояние. Если вы попытаетесь вызвать эти методы, в то время как RecognizerRunner не в состоянии READY состояния, вы получите IllegalStateExceptionRecognizerRunner's из потока пользовательского интерфейсаRecognizerRunner сначала возвращается в READY состояние, а затем вызывает метод OnscanningDone предоставленного ScanResultListener .onScanningDone ScanResultListener будет вызван в потоке обработки фоновой обработки, поэтому убедитесь, что вы не выполняете операции пользовательского интерфейса в этом обратном вызове. Также обратите внимание, что до тех пор, пока метод onScanningDone не завершится, RecognizerRunner не будет выполнять распознавание другого изображения или строки, даже если какой -либо из методов recognize* был назван сразу после перехода в состояние READY состояния. Это означает, что результаты распознавателей в комплекте в рамках RecognizerBundle , связанного с RecognizerRunner не изменяются, в то время как, возможно, используются в методе onScanningDone .terminate , RecognizerRunner Singleton выпустит все свои внутренние ресурсы. Обратите внимание, что даже после вызова terminate вы могли бы получить событие onScanningDone , если в процессе выполнения была работа, когда была вызвана terminate .terminate может быть вызван из любого государства RecognizerRunner СинглтонаRecognizerRunner Singleton с помощью метода getCurrentState Как chanceserrunnerview, так и RecognizerRunner используют один и тот же внутренний синглтон, который управляет нативным кодом. Этот синглтон обрабатывает инициализацию и прекращение нативной библиотеки и пропагандирующие узнаватели в местную библиотеку. Можно использовать RecognizerRunnerView и RecognizerRunner вместе, так как внутренний Singleton обеспечит правильную синхронизацию и настройки правильного распознавания. Если вы столкнетесь с проблемами при использовании RecognizerRunner в сочетании с RecognizerRunnerView , сообщите нам об этом!
Когда вы используете комбинированные распознаватели, и требуются изображения обеих сторон документа, вам необходимо позвонить в RecognizerRunner.recognize* несколько раз. Назовите его сначала с изображениями первой стороны документа, пока он не прочитал, а затем с изображениями второй стороны. Комбинированный распознаватель автоматически переключается на второе боковое сканирование, после того как он успешно прочитал первую сторону. Чтобы быть уведомленным при завершении первого бокового сканирования, вы должны установить FirstSidereCognitionCallback через Metadatacallbacks. Если вам не нужна эта информация, например, когда у вас есть только одно изображение для каждой стороны документа, не устанавливайте FirstSideRecognitionCallback и проверяйте распознавание successType в ScanResultListener.OnsCanningDone, после обработки второго бокового изображения.
BlinkIdUISettings и BlinkIdOverlayController BlinkIdOverlayController реализует новый пользовательский интерфейс для сканирующих идентификационных документов, которые оптимально разработаны для использования с новым BlinkIdMultiSideRecognizer и BlinkIdSingleSideRecognizer . Он реализует несколько новых функций:
Новый пользовательский интерфейс позволяет пользователю сканировать документ под любым углом, в любой ориентации. Мы рекомендуем привлечь ориентацию ландшафта, если вы сканируете штрих -коды на задней стороне, потому что в этой ориентации показатель успеха будет выше.
Чтобы запустить встроенное занятие, которое использует BlinkIdOverlayController , используйте BlinkIdUISettings .
Чтобы настроить наложение, предоставьте свой пользовательский ресурс стиля с помощью метода BlinkIdUISettings.setOverlayViewStyle() или через конструктор ReticleOverlayView . Вы можете настроить элементы, помеченные на скриншоты выше, предоставив следующие атрибуты в вашем стиле:
Выход
mb_exitScanDrawable - значок, который можно нарисоватьBlinkIdUISettings.setShowCancelButton(false)факел
mb_torchOnDrawable - значок, который можно нарисовать, который показан при включении факелаmb_torchOffDrawable - значок, который можно нарисовать, показывающий, когда факел отключенBlinkIdUISettings.setShowTorchButton(false)инструкции
mb_instructionsTextAppearance - стиль, который будет использоваться как android:textAppearancemb_instructionsBackgroundDrawable - Drawkable, используемый для фонаmb_instructionsBackgroundColor - цвет, используемый для фонаПредупреждение фонарика
mb_flashlightWarningTextAppearance - стиль, который будет использоваться как android:textAppearancemb_flashlightWarningBackgroundDrawable - Drawkable, используемый для фонаBlinkIdUISettings.setShowFlashlightWarning(false)значок карты
mb_cardFrontDrawable - Значок, который можно нарисовать, показано во время анимации флип -карты, представляя переднюю сторону картыmb_cardBackDrawable - значок, который можно нарисовать во время анимации FLIP CARD, представляя заднюю сторону картысетка
mb_reticleDefaultDrawable - Drawable, показанная, когда сетка находится в нейтральном состоянииmb_reticleSuccessDrawable - Drawable, показанная при сетке в состоянии успеха (сканирование было успешным)mb_reticleErrorDrawable - Drawable, показанная, когда сетка находится в состоянии ошибкиmb_reticleColor - Цвет, используемый для вращающейся сеткиmb_reticleDefaultColor - Цвет, используемый для сетки в нейтральном состоянииmb_reticleErrorColor - Цвет, используемый для сетки в состоянии ошибкиmb_successFlashColor - Цвет, используемый для эффекта вспышки на успешном сканировании Чтобы настроить видимость и стиль этих двух диалогов, используйте методы, предоставленные в BlinkIdUISettings .
Метод управления наглядностью диалога введения - BlinkIdUISettings.setShowIntroductionDialog(boolean showIntroductionDialog) и по умолчанию устанавливается на TRUE, что означает диалог введения.
Метод управления видимостью диалогового окна взимания - BlinkIdUISettings.setShowOnboardingInfo(boolean showOnboardingInfo) , и по умолчанию устанавливается на TRUE, что означает диалог введения.
Существует также метод контроля задержки «Показать помощь?» Подсказка , которая показана выше кнопки справки. Сама кнопка будет показана, если предыдущий метод отображения верна. Метод установления длины задержки подсказки - BlinkIdUISettings.setShowTooltipTimeIntervalMs(long showTooltipTimeIntervalMs) . Параметр времени установлен в миллисекундах.
Настройка задержки по умолчанию составляет 12 секунд (12000 миллисекунд).
Настройка и тематика этих элементов введения и адаптации можно сделать так же, как и в предыдущей главе, предоставив следующие атрибуты:
Кнопка помощи
mb_helpButtonDrawable - DRAVEBALE, который показан при включении кнопки справкиmb_helpButtonBackgroundColor - Цвет, используемый для фона кнопки справкиmb_helpButtonQuestionmarkColor - Цвет, используемый для кнопки помощиПомогите подъема инструментов
mb_helpTooltipBackground - Drawable, который отображается в качестве фона, когда всплывает подсказка для подсказкиmb_helpTooltipColor - Цвет, используемый для справкиmb_helpTooltipTextAppearance - Стиль, который будет использоваться как android:textAppearanceВВЕДЕНИЕ ДИАЛОГ
mb_introductionBackgroundColor - Цвет, используемый для введения фона экранаmb_introductionTitleTextAppearance - Стиль, который будет использоваться в качестве android:textAppearancemb_introductionMessageTextAppearance - Стиль, который будет использоваться как android:textAppearancemb_introductionButtonTextAppearance - стиль, который будет использоваться как android:textAppearanceBlinkIdUISettings.setShowIntroductionDialog(false)Диалог на адаптирование
mb_onboardingBackgroundColor - Цвет, используемый для фона экранов на адаптациюmb_onboardingPageIndicatorColor - Цвет, используемый для круговых страниц на экранах адаптацииmb_onboardingTitleTextAppearance - стиль, который будет использоваться как android:textAppearancemb_onboardingMessageTextAppearance - стиль, который будет использоваться как android:textAppearancemb_onboardingButtonTextAppearance - стиль, который будет использоваться как android:textAppearanceBlinkIdUISettings.setShowOnboardingInfo(false) Диалоги оповещения, называемые SDK, имеют свой собственный набор свойств, которые могут быть изменены в styles.xml .
MB_alert_dialog - это тема, которая расширяет тему Theme.AppCompat.Light.Dialog.Alert Theme и использует цвета темы приложения по умолчанию. Чтобы изменить атрибуты в этих диалогах по предупреждению, не изменяя другие атрибуты в приложении пользователя, тема MB_alert_dialog должна быть перезаписана.
< style name = " MB_alert_dialog " parent = " Theme.AppCompat.Light.Dialog.Alert " >
< item name = " android:textSize " >TEXT_SIZE</ item >
< item name = " android:background " >COLOR</ item >
< item name = " android:textColorPrimary " >COLOR</ item >
< item name = " colorAccent " >COLOR</ item >
</ style >Атрибуты, которые не перезаписаны, будут использовать цвета и размеры темы приложения по умолчанию.
colorAccent Attbite используется для изменения цвета кнопки диалога оповещения. Если Attribute Theme colorAccent изменяется в другом месте, этот цвет диалога оповещения также будет изменен. Тем не менее, перезапись темы MB_alert_dialog , и этот атрибут внутри нее будет гарантировать, что изменяется только цвет кнопки в диалоге MicroBlink SDK SDK. Если тема приложения расширяет тему из набора MaterialComponents (например, Theme.MaterialComponents.Light.NoActionBar ), вышеупомянутый цвет кнопок может быть изменен только путем перезаписи атрибута colorOnPrimary вместо colorAccent атрибута.
DocumentUISettings DocumentUISettings запускает деятельность, которая использует BlinkIdOverlayController с альтернативным пользовательским интерфейсом. Он лучше всего подходит для сканирования отдельных документов различных карточных документов, и его не следует использовать с комбинированными распознавателями, поскольку он не дает пользовательских инструкций, когда переключаться на заднюю сторону.
LegacyDocumentVerificationUISettings LegacyDocumentVerificationUISettings запускает деятельность, которая использует BlinkIdOverlayController с альтернативным пользовательским интерфейсом. Он лучше всего подходит для комбинированных распознавателей , потому что он управляет сканированием нескольких сторон документов в открытии одной камеры и направляет пользователя через процесс сканирования. Он также может быть использован для одноконного сканирования удостоверений личности, паспортов, водительских лицензий и т. Д.
Строки, используемые в рамках встроенных мероприятий и наложений, могут быть локализованы на любом языке. Если вы используете RecognizerRunnerView (см. В этой главе для получения дополнительной информации) в своей пользовательской активности сканирования или фрагмента, вы должны обрабатывать локализацию, как в любом другом приложении Android. RecognizerRunnerView не использует строки и не притягиваемые, он использует активы только из папки assets/microblink . Эти активы не должны быть затронуты, поскольку они необходимы для того, чтобы распознавать правильно.
Однако, если вы используете наши встроенные действия или накладывание, они будут использовать ресурсы, упакованные в LibBlinkID.aar для отображения строк и изображений поверх вида камеры. Мы уже подготовили строки для нескольких языков, которые вы можете использовать из коробки. Вы также можете изменить эти строки, или вы можете добавить свой собственный язык.
Чтобы использовать язык, вы должны включить его из кода:
Чтобы использовать определенный язык, при запуске приложения, прежде чем открывать любой компонент пользовательского интерфейса из SDK, вы должны назвать метод LanguageUtils.setLanguageAndCountry(language, country, context) . Например, вы можете установить язык на хорватский
// define BlinkID language
LanguageUtils . setLanguageAndCountry ( "hr" , "" , this ); Blinkid можно легко перевести на другие языки. Папка res в Archive LibBlinkID.aar имеет values папок, которые содержат strings.xml - этот файл содержит английские строки. In order to make eg croatian translation, create a folder values-hr in your project and put the copy of strings.xml inside it (you might need to extract LibBlinkID.aar archive to access those files). Then, open that file and translate the strings from English into Croatian.
To modify an existing string, the best approach would be to:
strings.xml in folder res/values-hr of the LibBlinkID.aar archive<string name="MBBack">Back</string>strings.xml in the folder res/values-hr , if it doesn't already exist<string name="MBBack">Natrag</string>RecognizerRunner and RecognizerRunnerViewProcessing events, also known as Metadata callbacks are purely intended for giving processing feedback on UI or to capture some debug information during development of your app using BlinkID SDK. For that reason, built-in activities and fragments handle those events internally. If you need to handle those events yourself, you need to use either RecognizerRunnerView or RecognizerRunner.
Callbacks for all events are bundled into the MetadataCallbacks object. Both RecognizerRunner and RecognizerRunnerView have methods which allow you to set all your callbacks.
We suggest that you check for more information about available callbacks and events to which you can handle in the javadoc for MetadataCallbacks class.
Please note that both those methods need to pass information about available callbacks to the native code and for efficiency reasons this is done at the time setMetadataCallbacks method is called and not every time when change occurs within the MetadataCallbacks object. This means that if you, for example, set QuadDetectionCallback to MetadataCallbacks after you already called setMetadataCallbacks method, the QuadDetectionCallback will not be registered with the native code and you will not receive its events.
Similarly, if you, for example, remove the QuadDetectionCallback from MetadataCallbacks object after you already called setMetadataCallbacks method, your app will crash with NullPointerException when our processing code attempts to invoke the method on removed callback (which is now set to null ). We deliberately do not perform null check here because of two reasons:
null callback, while still being registered to native code is illegal state of your program and it should therefore crash Remember , each time you make some changes to MetadataCallbacks object, you need to apply those changes to to your RecognizerRunner or RecognizerRunnerView by calling its setMetadataCallbacks method.
Recognizer concept and RecognizerBundle This section will first describe what is a Recognizer and how it should be used to perform recognition of the images, videos and camera stream. Next, we will describe how RecognizerBundle can be used to tweak the recognition procedure and to transfer Recognizer objects between activities.
RecognizerBundle is an object which wraps the Recognizers and defines settings about how recognition should be performed. Besides that, RecognizerBundle makes it possible to transfer Recognizer objects between different activities, which is required when using built-in activities to perform scanning, as described in first scan section, but is also handy when you need to pass Recognizer objects between your activities.
List of all available Recognizer objects, with a brief description of each Recognizer , its purpose and recommendations how it should be used to get best performance and user experience, can be found here .
Recognizer concept The Recognizer is the basic unit of processing within the BlinkID SDK. Its main purpose is to process the image and extract meaningful information from it. As you will see later, the BlinkID SDK has lots of different Recognizer objects that have various purposes.
Each Recognizer has a Result object, which contains the data that was extracted from the image. The Result object is a member of corresponding Recognizer object and its lifetime is bound to the lifetime of its parent Recognizer object. If you need your Result object to outlive its parent Recognizer object, you must make a copy of it by calling its method clone() .
Every Recognizer is a stateful object, that can be in two states: idle state and working state . While in idle state , you can tweak Recognizer object's properties via its getters and setters. After you bundle it into a RecognizerBundle and use either RecognizerRunner or RecognizerRunnerView to run the processing with all Recognizer objects bundled within RecognizerBundle , it will change to working state where the Recognizer object is being used for processing. While being in working state , you cannot tweak Recognizer object's properties. If you need to, you have to create a copy of the Recognizer object by calling its clone() , then tweak that copy, bundle it into a new RecognizerBundle and use reconfigureRecognizers to ensure new bundle gets used on processing thread.
While Recognizer object works, it changes its internal state and its result. The Recognizer object's Result always starts in Empty state. When corresponding Recognizer object performs the recognition of given image, its Result can either stay in Empty state (in case Recognizer failed to perform recognition), move to Uncertain state (in case Recognizer performed the recognition, but not all mandatory information was extracted), move to StageValid state (in case Recognizer successfully scanned one part/side of the document and there are more fields to extract) or move to Valid state (in case Recognizer performed recognition and all mandatory information was successfully extracted from the image).
As soon as one Recognizer object's Result within RecognizerBundle given to RecognizerRunner or RecognizerRunnerView changes to Valid state, the onScanningDone callback will be invoked on same thread that performs the background processing and you will have the opportunity to inspect each of your Recognizer objects' Results to see which one has moved to Valid state.
As already stated in section about RecognizerRunnerView , as soon as onScanningDone method ends, the RecognizerRunnerView will continue processing new camera frames with same Recognizer objects, unless paused. Continuation of processing or resetting recognition will modify or reset all Recognizer objects's Results . When using built-in activities, as soon as onScanningDone is invoked, built-in activity pauses the RecognizerRunnerView and starts finishing the activity, while saving the RecognizerBundle with active Recognizer objects into Intent so they can be transferred back to the calling activities.
RecognizerBundle The RecognizerBundle is wrapper around Recognizers objects that can be used to transfer Recognizer objects between activities and to give Recognizer objects to RecognizerRunner or RecognizerRunnerView for processing.
The RecognizerBundle is always constructed with array of Recognizer objects that need to be prepared for recognition (ie their properties must be tweaked already). The varargs constructor makes it easier to pass Recognizer objects to it, without the need of creating a temporary array.
The RecognizerBundle manages a chain of Recognizer objects within the recognition process. When a new image arrives, it is processed by the first Recognizer in chain, then by the second and so on, iterating until a Recognizer object's Result changes its state to Valid or all of the Recognizer objects in chain were invoked (none getting a Valid result state). If you want to invoke all Recognizers in the chain, regardless of whether some Recognizer object's Result in chain has changed its state to Valid or not, you can allow returning of multiple results on a single image.
You cannot change the order of the Recognizer objects within the chain - no matter the order in which you give Recognizer objects to RecognizerBundle , they are internally ordered in a way that provides best possible performance and accuracy. Also, in order for BlinkID SDK to be able to order Recognizer objects in recognition chain in the best way possible, it is not allowed to have multiple instances of Recognizer objects of the same type within the chain. Attempting to do so will crash your application.
Recognizer objects between activities Besides managing the chain of Recognizer objects, RecognizerBundle also manages transferring bundled Recognizer objects between different activities within your app. Although each Recognizer object, and each its Result object implements Parcelable interface, it is not so straightforward to put those objects into Intent and pass them around between your activities and services for two main reasons:
Result object is tied to its Recognizer object, which manages lifetime of the native Result object.Result object often contains large data blocks, such as images, which cannot be transferred via Intent because of Android's Intent transaction data limit. Although the first problem can be easily worked around by making a copy of the Result and transfer it independently, the second problem is much tougher to cope with. This is where, RecognizerBundle's methods saveToIntent and loadFromIntent come to help, as they ensure the safe passing of Recognizer objects bundled within RecognizerBundle between activities according to policy defined with method setIntentDataTransferMode :
STANDARD , the Recognizer objects will be passed via Intent using normal Intent transaction mechanism , which is limited by Android's Intent transaction data limit. This is same as manually putting Recognizer objects into Intent and is OK as long as you do not use Recognizer objects that produce images or other large objects in their Results .OPTIMISED , the Recognizer objects will be passed via internal singleton object and no serialization will take place. This means that there is no limit to the size of data that is being passed. This is also the fastest transfer method, but it has a serious drawback - if Android kills your app to save memory for other apps and then later restarts it and redelivers Intent that should contain Recognizer objects, the internal singleton that should contain saved Recognizer objects will be empty and data that was being sent will be lost. You can easily provoke that condition by choosing No background processes under Limit background processes in your device's Developer options , and then switch from your app to another app and then back to your app.PERSISTED_OPTIMISED , the Recognizer objects will be passed via internal singleton object (just like in OPTIMISED mode) and will additionaly be serialized into a file in your application's private folder. In case Android restarts your app and internal singleton is empty after re-delivery of the Intent , the data will be loaded from file and nothing will be lost. The files will be automatically cleaned up when data reading takes place. Just like OPTIMISED , this mode does not have limit to the size of data that is being passed and does not have a drawback that OPTIMISED mode has, but some users might be concerned about files to which data is being written.onSaveInstanceState and save bundle back to file by calling its saveState method. Also, after saving state, you should ensure that you clear saved state in your onResume , as onCreate may not be called if activity is not restarted, while onSaveInstanceState may be called as soon as your activity goes to background (before onStop ), even though activity may not be killed at later time.OPTIMISED mode to transfer large data and image between activities or create your own mechanism for data transfer. Note that your application's private folder is only accessible by your application and your application alone, unless the end-user's device is rooted. This section will give a list of all Recognizer objects that are available within BlinkID SDK, their purpose and recommendations how they should be used to get best performance and user experience.
The FrameGrabberRecognizer is the simplest recognizer in BlinkID SDK, as it does not perform any processing on the given image, instead it just returns that image back to its FrameCallback . Its Result never changes state from Empty.
This recognizer is best for easy capturing of camera frames with RecognizerRunnerView . Note that Image sent to onFrameAvailable are temporary and their internal buffers all valid only until the onFrameAvailable method is executing - as soon as method ends, all internal buffers of Image object are disposed. If you need to store Image object for later use, you must create a copy of it by calling clone .
Also note that FrameCallback interface extends Parcelable interface, which means that when implementing FrameCallback interface, you must also implement Parcelable interface.
This is especially important if you plan to transfer FrameGrabberRecognizer between activities - in that case, keep in mind that the instance of your object may not be the same as the instance on which onFrameAvailable method gets called - the instance that receives onFrameAvailable calls is the one that is created within activity that is performing the scan.
The SuccessFrameGrabberRecognizer is a special Recognizer that wraps some other Recognizer and impersonates it while processing the image. However, when the Recognizer being impersonated changes its Result into Valid state, the SuccessFrameGrabberRecognizer captures the image and saves it into its own Result object.
Since SuccessFrameGrabberRecognizer impersonates its slave Recognizer object, it is not possible to give both concrete Recognizer object and SuccessFrameGrabberRecognizer that wraps it to same RecognizerBundle - doing so will have the same result as if you have given two instances of same Recognizer type to the RecognizerBundle - it will crash your application.
This recognizer is best for use cases when you need to capture the exact image that was being processed by some other Recognizer object at the time its Result became Valid . When that happens, SuccessFrameGrabber's Result will also become Valid and will contain described image. That image can then be retrieved with getSuccessFrame() method.
Unless stated otherwise for concrete recognizer, single side BlinkID recognizers from this list can be used in any context, but they work best with BlinkIdUISettings and DocumentScanUISettings , with UIs best suited for document scanning.
Combined recognizers should be used with BlinkIdUISettings . They manage scanning of multiple document sides in the single camera opening and guide the user through the scanning process. Some combined recognizers support scanning of multiple document types, but only one document type can be scanned at a time.
The BlinkIdSingleSideRecognizer scans and extracts data from the single side of the supported document. You can find the list of the currently supported documents here. We will continue expanding this recognizer by adding support for new document types in the future. Star this repo to stay updated.
The BlinkIdSingleSideRecognizer works best with the BlinkIdUISettings and BlinkIdOverlayController .
Use BlinkIdMultiSideRecognizer for scanning both sides of the supported document. First, it scans and extracts data from the front, then scans and extracts data from the back, and finally, combines results from both sides. The BlinkIdMultiSideRecognizer also performs data matching and returns a flag if the extracted data captured from the front side matches the data from the back. You can find the list of the currently supported documents here. We will continue expanding this recognizer by adding support for new document types in the future. Star this repo to stay updated.
The BlinkIdMultiSideRecognizer works best with the BlinkIdUISettings and BlinkIdOverlayController .
The MrtdRecognizer is used for scanning and data extraction from the Machine Readable Zone (MRZ) of the various Machine Readable Travel Documents (MRTDs) like ID cards and passports. This recognizer is not bound to the specific country, but it can be configured to only return data that match some criteria defined by the MrzFilter .
You can find information about usage context at the beginning of this section.
The MrtdCombinedRecognizer scans Machine Readable Zone (MRZ) after scanning the full document image and face image (usually MRZ is on the back side and face image is on the front side of the document). Internally, it uses DocumentFaceRecognizer for obtaining full document image and face image as the first step and then MrtdRecognizer for scanning the MRZ.
You can find information about usage context at the beginning of this section.
The PassportRecognizer is used for scanning and data extraction from the Machine Readable Zone (MRZ) of the various passport documents. This recognizer also returns face image from the passport.
You can find information about usage context at the beginning of this section.
The VisaRecognizer is used for scanning and data extraction from the Machine Readable Zone (MRZ) of the various visa documents. This recognizer also returns face image from the visa document.
You can find information about usage context at the beginning of this section.
The IdBarcodeRecognizer is used for scanning barcodes from various ID cards. Check this document to see the list of supported document types.
You can find information about usage context at the beginning of this section.
The DocumentFaceRecognizer is a special type of recognizer that only returns face image and full document image of the scanned document. It does not extract document fields like first name, last name, etc. This generic recognizer can be used to obtain document images in cases when specific support for some document type is not available.
You can find information about usage context at the beginning of this section.
You need to ensure that the final app gets all resources required by BlinkID . At the time of writing this documentation, Android does not have support for combining multiple AAR libraries into single fat AAR. The problem is that resource merging is done while building application, not while building AAR, so application must be aware of all its dependencies. There is no official Android way of "hiding" third party AAR within your AAR.
This problem is usually solved with transitive Maven dependencies, ie when publishing your AAR to Maven you specify dependencies of your AAR so they are automatically referenced by app using your AAR. Besides this, there are also several other approaches you can try:
RecognizerRunnerView ). You can perform custom UI integration while taking care that all resources (strings, layouts, images, ...) used are solely from your AAR, not from BlinkID . Then, in your AAR you should not reference LibBlinkID.aar as gradle dependency, instead you should unzip it and copy its assets to your AAR's assets folder, its classes.jar to your AAR's lib folder (which should be referenced by gradle as jar dependency) and contents of its jni folder to your AAR's src/main/jniLibs folder.BlinkID is distributed with ARMv7 and ARM64 native library binaries.
ARMv7 architecture gives the ability to take advantage of hardware accelerated floating point operations and SIMD processing with NEON. This gives BlinkID a huge performance boost on devices that have ARMv7 processors. Most new devices (all since 2012.) have ARMv7 processor so it makes little sense not to take advantage of performance boosts that those processors can give. Also note that some devices with ARMv7 processors do not support NEON and VFPv4 instruction sets, most popular being those based on NVIDIA Tegra 2, ARM Cortex A9 and older. Since these devices are old by today's standard, BlinkID does not support them. For the same reason, BlinkID does not support devices with ARMv5 ( armeabi ) architecture.
ARM64 is the new processor architecture that most new devices use. ARM64 processors are very powerful and also have the possibility to take advantage of new NEON64 SIMD instruction set to quickly process multiple pixels with a single instruction.
There are some issues to be considered:
LibBlinkID.aar archive contains ARMv7 and ARM64 builds of the native library. By default, when you integrate BlinkID into your app, your app will contain native builds for all these processor architectures. Thus, BlinkID will work on ARMv7 and ARM64 devices and will use ARMv7 features on ARMv7 devices and ARM64 features on ARM64 devices. However, the size of your application will be rather large.
We recommend that you distribute your app using App Bundle. This will defer apk generation to Google Play, allowing it to generate minimal APK for each specific device that downloads your app, including only required processor architecture support.
If you are unable to use App Bundle, you can create multiple flavors of your app - one flavor for each architecture. With gradle and Android studio this is very easy - just add the following code to build.gradle file of your app:
android {
...
splits {
abi {
enable true
reset()
include 'armeabi-v7a', 'arm64-v8a'
universalApk true
}
}
}
With that build instructions, gradle will build two different APK files for your app. Each APK will contain only native library for one processor architecture and one APK will contain all architectures. In order for Google Play to accept multiple APKs of the same app, you need to ensure that each APK has different version code. This can easily be done by defining a version code prefix that is dependent on architecture and adding real version code number to it in following gradle script:
// map for the version code
def abiVersionCodes = ['armeabi-v7a':1, 'arm64-v8a':2]
import com.android.build.OutputFile
android.applicationVariants.all { variant ->
// assign different version code for each output
variant.outputs.each { output ->
def filter = output.getFilter(OutputFile.ABI)
if(filter != null) {
output.versionCodeOverride = abiVersionCodes.get(output.getFilter(OutputFile.ABI)) * 1000000 + android.defaultConfig.versionCode
}
}
}
For more information about creating APK splits with gradle, check this article from Google.
After generating multiple APK's, you need to upload them to Google Play. For tutorial and rules about uploading multiple APK's to Google Play, please read the official Google article about multiple APKs.
If you won't be distributing your app via Google Play or for some other reasons want to have single APK of smaller size, you can completely remove support for certain CPU architecture from your APK. This is not recommended due to consequences .
To keep only some CPU architectures, for example armeabi-v7a and arm64-v8a , add the following statement to your android block inside build.gradle :
android {
...
ndk {
// Tells Gradle to package the following ABIs into your application
abiFilters 'armeabi-v7a', 'arm64-v8a'
}
}
This will remove other architecture builds for all native libraries used by the application.
To remove support for a certain CPU architecture only for BlinkID , add the following statement to your android block inside build.gradle :
android {
...
packagingOptions {
exclude 'lib/<ABI>/libBlinkID.so'
}
}
where <ABI> represents the CPU architecture you want to remove:
exclude 'lib/armeabi-v7a/libBlinkID.so'exclude 'lib/arm64-v8a/libBlinkID.so' You can also remove multiple processor architectures by specifying exclude directive multiple times. Just bear in mind that removing processor architecture will have side effects on performance and stability of your app. Please read this for more information.
Google decided that as of August 2019 all apps on Google Play that contain native code need to have native support for 64-bit processors (this includes ARM64 and x86_64). This means that you cannot upload application to Google Play Console that supports only 32-bit ABI and does not support corresponding 64-bit ABI.
By removing ARMv7 support, BlinkID will not work on devices that have ARMv7 processors.
By removing ARM64 support, BlinkID will not use ARM64 features on ARM64 device
If you are combining BlinkID library with other libraries that contain native code into your application, make sure you match the architectures of all native libraries. For example, if third party library has got only ARMv7 version, you must use exactly ARMv7 version of BlinkID with that library, but not ARM64. Using this architectures will crash your app at initialization step because JVM will try to load all its native dependencies in same preferred architecture and will fail with UnsatisfiedLinkError .
libc++_shared.so BlinkID contains native code that depends on the C++ runtime. This runtime is provided by the libc++_shared.so , which needs to be available in your app that is using BlinkID . However, the same file is also used by various other libraries that contain native components. If you happen to integrate both such library together with BlinkID in your app, your build will fail with an error similar to this one:
* What went wrong:
Execution failed for task ':app:mergeDebugNativeLibs'.
> A failure occurred while executing com.android.build.gradle.internal.tasks.MergeJavaResWorkAction
> 2 files found with path 'lib/arm64-v8a/libc++_shared.so' from inputs:
- <path>/.gradle/caches/transforms-3/3d428f9141586beb8805ce57f97bedda/transformed/jetified-opencv-4.5.3.0/jni/arm64-v8a/libc++_shared.so
- <path>/.gradle/caches/transforms-3/609476a082a81bd7af00fd16a991ee43/transformed/jetified-blinkid-6.12.0/jni/arm64-v8a/libc++_shared.so
If you are using jniLibs and CMake IMPORTED targets, see
https://developer.android.com/r/tools/jniLibs-vs-imported-targets
The error states that multiple different dependencies provide the same file lib/arm64/libc++_shared.so (in this case, OpenCV and BlinkID).
You can resolve this issue by making sure that the dependency that uses newer version of libc++_shared.so is listed first in your dependency list, and then, simply add the following to your build.gradle :
android {
packaging {
jniLibs {
pickFirsts.add("lib/armeabi-v7a/libc++_shared.so")
pickFirsts.add("lib/arm64-v8a/libc++_shared.so")
}
}
}
IMPORTANT NOTE
The code above will always select the first libc++_shared.so from your dependency list, so make sure that the dependency that uses the latest version of libc++_shared.so is listed first. This is because libc++_shared.so is backward-compatible, but not forward-compatible. This means that, eg libBlinkID.so built against libc++_shared.so from NDK r24 will work without problems when you package it together with libc++_shared.so from NDK r26, but will crash when you package it together with libc++_shared.so from NDK r21. This is true for all your native dependencies.
In case of problems with SDK integration, first make sure that you have followed integration instructions. If you're still having problems, please contact us at help.microblink.com.
If you are getting "invalid license key" error or having other license-related problems (eg some feature is not enabled that should be or there is a watermark on top of camera), first check the ADB logcat. All license-related problems are logged to error log so it is easy to determine what went wrong.
When you have to determine what is the license-relate problem or you simply do not understand the log, you should contact us help.microblink.com. When contacting us, please make sure you provide following information:
AndroidManifest.xml and/or your build.gradle file)Keep in mind: Versions 5.8.0 and above require an internet connection to work under our new License Management Program.
We're only asking you to do this so we can validate your trial license key. Data extraction still happens offline, on the device itself. Once the validation is complete, you can continue using the SDK in offline mode (or over a private network) until the next check.
If you are having problems with scanning certain items, undesired behaviour on specific device(s), crashes inside BlinkID or anything unmentioned, please do as follows:
enable logging to get the ability to see what is library doing. To enable logging, put this line in your application:
com . microblink . blinkid . util . Log . setLogLevel ( com . microblink . blinkid . util . Log . LogLevel . LOG_VERBOSE );After this line, library will display as much information about its work as possible. Please save the entire log of scanning session to a file that you will send to us. It is important to send the entire log, not just the part where crash occurred, because crashes are sometimes caused by unexpected behaviour in the early stage of the library initialization.
Contact us at help.microblink.com describing your problem and provide following information:
InvalidLicenseKeyException when I construct specific Recognizer object Each license key contains information about which features are allowed to use and which are not. This exception indicates that your production license does not allow using of specific Recognizer object. You should contact support to check if provided license is OK and that it really contains all features that you have purchased.
InvalidLicenseKeyException with trial license key Whenever you construct any Recognizer object or any other object that derives from Entity , a check whether license allows using that object will be performed. If license is not set prior constructing that object, you will get InvalidLicenseKeyException . We recommend setting license as early as possible in your app, ideally in onCreate callback of your Application singleton.
ClassNotFoundExceptionThis usually happens when you perform integration into Eclipse project and you forget to add resources or native libraries into the project. You must alway take care that same versions of both resources, assets, java library and native libraries are used in combination. Combining different versions of resources, assets, java and native libraries will trigger crash in SDK. This problem can also occur when you have performed improper integration of BlinkID SDK into your SDK. Please read how to embed BlinkID inside another SDK.
UnsatisfiedLinkError This error happens when JVM fails to load some native method from native library If performing integration into Android studio and this error happens, make sure that you have correctly combined BlinkID SDK with third party SDKs that contain native code, especially if you need resolving conflict over libc++_shared.so . If this error also happens in our integration sample apps, then it may indicate a bug in the SDK that is manifested on specific device. Please report that to our support team.
libc++_shared.so Please consult the section about resolving libc++_shared.so conflict.
MetadataCallbacks object, but it is not being called Make sure that after adding your callback to MetadataCallbacks you have applied changes to RecognizerRunnerView or RecognizerRunner as described in this section.
MetadataCallbacks object, and now app is crashing with NullPointerException Make sure that after removing your callback from MetadataCallbacks you have applied changes to RecognizerRunnerView or RecognizerRunner as described in this section.
onScanningDone callback I have the result inside my Recognizer , but when scanning activity finishes, the result is gone This usually happens when using RecognizerRunnerView and forgetting to pause the RecognizerRunnerView in your onScanningDone callback. Then, as soon as onScanningDone happens, the result is mutated or reset by additional processing that Recognizer performs in the time between end of your onScanningDone callback and actual finishing of the scanning activity. For more information about statefulness of the Recognizer objects, check this section.
IllegalStateException stating Data cannot be saved to intent because its size exceeds intent limit . This usually happens when you use Recognizer that produces image or similar large object inside its Result and that object exceeds the Android intent transaction limit. You should enable different intent data transfer mode. For more information about this, check this section. Also, instead of using built-in activity, you can use RecognizerRunnerFragment with built-in scanning overlay.
This usually happens when you attempt to transfer standalone Result that contains images or similar large objects via Intent and the size of the object exceeds Android intent transaction limit. Depending on the device, you will get either TransactionTooLargeException, a simple message BINDER TRANSACTION FAILED in log and your app will freeze or your app will get into restart loop. We recommend that you use RecognizerBundle and its API for sending Recognizer objects via Intent in a more safe manner (check this section for more information). However, if you really need to transfer standalone Result object (eg Result object obtained by cloning Result object owned by specific Recognizer object), you need to do that using global variables or singletons within your application. Sending large objects via Intent is not supported by Android.
Direct API When automatic scanning of camera frames with our camera management is used (provided camera overlays or direct usage of RecognizerRunnerView ), we use a stream of video frames and send multiple images to the recognition to boost reading accuracy. Also, we perform frame quality analysis and combine scanning results from multiple camera frames. On the other hand, when you are using the Direct API with a single image per document side, we cannot combine multiple images. We do our best to extract as much information as possible from that image. In some cases, when the quality of the input image is not good enough, for example, when the image is blurred or when glare is present, we are not able to successfully read the document.
Online trial licenses require a public network access for validation purposes. See Licensing issues.
onOcrResult() method in my OcrCallback is never invoked and all Result objects always return null in their OCR result gettersIn order to be able to obtain raw OCR result, which contains locations of each character, its value and its alternatives, you need to have a license that allows that. By default, licenses do not allow exposing raw OCR results in public API. If you really need that, please contact us and explain your use case.
You can find BlinkID SDK size report for all supported ABIs here.
Complete API reference can be found in Javadoc.
For any other questions, feel free to contact us at help.microblink.com.