El Blinkid Android SDK le permite construir una experiencia fantástica de incorporación en su aplicación Android.
Con un escaneo rápido, sus usuarios podrán extraer información de sus tarjetas de identidad, pasaportes, licencias de conducir y prácticamente cualquier otra identificación emitida por el gobierno que haya.
Blinkid es:
Para ver todas estas características en el trabajo, descargue nuestra aplicación de demostración gratuita:
¿Te sientes listo para romper con la integración? Primero asegúrese de admitir su tipo de documento ➡️ Lista completa. Y luego siga las pautas a continuación.
UISettings )RecognizerRunnerFragment )RecognizerRunnerViewString (analizador)BlinkIdUISettings y BlinkIdOverlayControllerDocumentUISettingsLegacyDocumentVerificationUISettingsRecognizerRunner y RecognizerRunnerViewRecognizer y RecognizerBundleRecognizerRecognizerBundleRecognizer entre actividadeslibc++_shared.soYes . RecognizerRunnerFragment y el controlador de superposición de cámara incorporado dentro de su actividad En su build.gradle .
repositories {
maven { url 'https://maven.microblink.com' }
}
Agregue Blinkid como dependencia y asegúrese de que transitive esté configurado en True
dependencies {
implementation('com.microblink:blinkid:6.12.0@aar') {
transitive = true
}
}
Android Studio debe importar automáticamente a Javadoc de la dependencia de Maven. Si eso no sucede, puede hacerlo manualmente siguiendo estos pasos:
External Libraries (generalmente esta es la última entrada en la vista del proyecto)blinkid-6.12.0 , haga clic derecho en ella y seleccione Library Properties...Library Properties+ en la esquina inferior izquierda de la ventana (el que contiene + con pequeño globo)https://blinkid.github.io/blinkid-android/OK Se requiere una clave de licencia válida para inicializar el escaneo. Puede solicitar una clave de licencia de prueba gratuita, después de registrarse, en MicroBlink Developer Hub. La licencia está obligada al nombre del paquete de su aplicación, así que asegúrese de ingresar el nombre del paquete correcto cuando se le solicite.
Descargue su archivo de licencia y colóquelo en la carpeta de activos de su aplicación. Asegúrese de establecer la clave de licencia antes de usar otras clases del SDK; de lo contrario, obtendrá una excepción de tiempo de ejecución.
Le recomendamos que extienda la clase de aplicación de Android y establezca la licencia en una devolución de llamada de OnCreate como esta:
public class MyApplication extends Application {
@ Override
public void onCreate () {
MicroblinkSDK . setLicenseFile ( "path/to/license/file/within/assets/dir" , this );
}
} public class MyApplication : Application () {
override fun onCreate () {
MicroblinkSDK .setLicenseFile( " path/to/license/file/within/assets/dir " , this )
}
} En su actividad principal, defina y cree el objeto ActivityResultLauncher anulando el método onActivityResult . Ambos OneSideDocumentScan y TwoSideDocumentScan se pueden usar intercambiablemente sin ninguna diferencia en la implementación. La única diferencia funcional es que OneSideDocumentScan es escanear solo un lado del documento y que TwoSideDocumentScan escanea más de un lado del documento.
ActivityResultLauncher < Void > resultLauncher = registerForActivityResult (
new TwoSideDocumentScan (),
twoSideScanResult -> {
ResultStatus resultScanStatus = twoSideScanResult . getResultStatus ();
if ( resultScanStatus == ResultStatus . FINISHED ) {
// code after a successful scan
// use result.getResult() for fetching results, for example:
String firstName = twoSideScanResult . getResult (). getFirstName (). value ();
} else if ( resultScanStatus == ResultStatus . CANCELLED ) {
// code after a cancelled scan
} else if ( resultScanStatus == ResultStatus . EXCEPTION ) {
// code after a failed scan
}
}
); private val resultLauncher =
registerForActivityResult( TwoSideDocumentScan ()) { twoSideScanResult : TwoSideScanResult ->
when (twoSideScanResult.resultStatus) {
ResultStatus . FINISHED -> {
// code after a successful scan
// use twoSideScanResult.result for fetching results, for example:
val firstName = twoSideScanResult.result?.firstName?.value()
}
ResultStatus . CANCELLED -> {
// code after a cancelled scan
}
ResultStatus . EXCEPTION -> {
// code after a failed scan
}
else -> {}
}
}@Composable
fun createLauncher (): ActivityResultLauncher < Void ?> {
return rememberLauncherForActivityResult( TwoSideDocumentScan ()) { twoSideScanResult : TwoSideScanResult ->
when (twoSideScanResult.resultStatus) {
ResultStatus . FINISHED -> {
// code after a successful scan
// use twoSideScanResult.result for fetching results, for example:
val firstName = twoSideScanResult.result?.firstName?.value()
}
ResultStatus . CANCELLED -> {
// code after a cancelled scan
}
ResultStatus . EXCEPTION -> {
// code after a failed scan
}
else -> {}
}
}
} Después de un escaneo, el result , que es una instancia de objeto OneSideScanResult o TwoSideScanResult , se actualizará. Puede definir qué sucede con los datos en la anulación de la función onActivityResult (el código Kotlin también anula esta función pero está implícito). Los resultados son accesibles en el método twoSideScanResult.getResult() ( twoSideScanResult.result en kotlin).
Comience al proceso de escaneo llamando ActivityResultObject y llamando ActivityResultLauncher.launch :
// method within MyActivity from previous step
public void startScanning () {
// Start scanning
resultLauncher . launch ( null );
} // method within MyActivity from previous step
public fun startScanning () {
// Start scanning
resultLauncher.launch()
} // within @Composable function or setContent block
val resultLauncher = createLauncher()
resultLauncher.launch() Los resultados estarán disponibles en una devolución de llamada, que se definen en el ActivityResultObject que se definió en el paso anterior.
Blinkid requiere Android API Nivel 21 o más nuevo.
La resolución de la vista previa del video de la cámara también es importante. Para realizar escaneos exitosos, la resolución de la vista previa de la cámara debe ser al menos 720p. Tenga en cuenta que la resolución de la vista previa de la cámara no es la misma que la resolución de grabación de video.
Blinkid se distribuye con binarios de la biblioteca nativos ARMV7 y ARM64 .
Blinkid es una biblioteca nativa, escrita en C ++ y disponible para múltiples plataformas. Debido a esto, Blinkid no puede trabajar en dispositivos con arquitecturas de hardware oscuras. Hemos compilado el código nativo Blinkid solo para el Android Abis más popular.
Incluso antes de configurar la clave de licencia, debe verificar si el parpadeo es compatible con el dispositivo actual (consulte la sección siguiente: Compatibilidad de compatibilidad ). Intentar llamar a cualquier método desde el SDK que se basa en el código nativo, como la verificación de la licencia, en un dispositivo con arquitectura de CPU no compatible se bloqueará su aplicación.
Si está combinando la biblioteca Blinkid con otras bibliotecas que contienen código nativo en su aplicación, asegúrese de que coincida con las arquitecturas de todas las bibliotecas nativas.
Para obtener más información, consulte la sección Consideraciones de arquitectura del procesador.
Así es como puede verificar si el Blinkid es compatible con el dispositivo:
// check if BlinkID is supported on the device,
RecognizerCompatibilityStatus status = RecognizerCompatibility . getRecognizerCompatibilityStatus ( this );
if ( status == RecognizerCompatibilityStatus . RECOGNIZER_SUPPORTED ) {
Toast . makeText ( this , "BlinkID is supported!" , Toast . LENGTH_LONG ). show ();
} else if ( status == RecognizerCompatibilityStatus . NO_CAMERA ) {
Toast . makeText ( this , "BlinkID is supported only via Direct API!" , Toast . LENGTH_LONG ). show ();
} else if ( status == RecognizerCompatibilityStatus . PROCESSOR_ARCHITECTURE_NOT_SUPPORTED ) {
Toast . makeText ( this , "BlinkID is not supported on current processor architecture!" , Toast . LENGTH_LONG ). show ();
} else {
Toast . makeText ( this , "BlinkID is not supported! Reason: " + status . name (), Toast . LENGTH_LONG ). show ();
} // check if _BlinkID_ is supported on the device,
when ( val status = RecognizerCompatibility .getRecognizerCompatibilityStatus( this )) {
RecognizerCompatibilityStatus . RECOGNIZER_SUPPORTED -> {
Toast .makeText( this , " BlinkID is supported! " , Toast . LENGTH_LONG ).show()
}
RecognizerCompatibilityStatus . NO_CAMERA -> {
Toast .makeText( this , " BlinkID is supported only via Direct API! " , Toast . LENGTH_LONG ).show()
}
RecognizerCompatibilityStatus . PROCESSOR_ARCHITECTURE_NOT_SUPPORTED -> {
Toast .makeText( this , " BlinkID is not supported on current processor architecture! " , Toast . LENGTH_LONG ).show()
}
else -> {
Toast .makeText( this , " BlinkID is not supported! Reason: " + status.name, Toast . LENGTH_LONG ).show()
}
}Algunos reconocedores requieren cámara con enfoque automático. Si intenta usarlos en un dispositivo que no admite Autococus, recibirá un error. Para evitar eso, puede verificar si un reconocimiento requiere enfoque automático llamando a su método RequerirautOfocus.
Si ya tiene una variedad de reconocedores, puede filtrar fácilmente los reconocedores que requieren enfoque automático de la matriz utilizando el siguiente fragmento de código:
Recognizer [] recArray = ...;
if (! RecognizerCompatibility . cameraHasAutofocus ( CameraType . CAMERA_BACKFACE , this )) {
recArray = RecognizerUtils . filterOutRecognizersThatRequireAutofocus ( recArray );
} var recArray : Array < Recognizer > = .. .
if ( ! RecognizerCompatibility .cameraHasAutofocus( CameraType . CAMERA_BACKFACE , this )) {
recArray = RecognizerUtils .filterOutRecognizersThatRequireAutofocus(recArray)
}Puede integrar Blinkid en su aplicación de cinco maneras diferentes, dependiendo de su caso de uso y necesidades de personalización:
OneSideDocumentScan y TwoSideDocumentScan ) - SDK maneja todo y solo necesita comenzar nuestra actividad incorporada y manejar el resultado, sin opciones de personalización.UISettings )-SDK maneja la mayor parte del trabajo, solo necesita definir un reconocimiento, configuración, iniciar nuestra actividad incorporada y el resultado de manejo, las opciones de personalización son limitadasRecognizerRunnerFragment )-Reutilización de escaneo UX de nuestras actividades incorporadas en su propia actividadRecognizerRunnerView ) - SDK maneja la administración de cámaras mientras tiene que implementar escaneo completamente personalizado UXRecognizerRunner ): SKD solo maneja el reconocimiento mientras debe proporcionarla con las imágenes, ya sea desde la cámara o desde un archivo OneSideDocumentScan y TwoSideDocumentScan ) OneSideDocumentScan y TwoSideDocumentScan son clases que contienen todas las definiciones de configuración necesarias para iniciar rápidamente las actividades de exploración incorporadas de SDK. Permite al usuario omitir todos los pasos de configuración como UISettings y RecognizerBundle e ir directamente a escanear.
Como se muestra en la realización de su primer escaneo, solo requiere la definición de un oyente de resultados, para definir lo que sucederá con los resultados del escaneo y llamando a la función de escaneo real.
UISettings ) UISettings es una clase que contiene todas las configuraciones necesarias para las actividades de escaneo incorporadas de SDK. Configura el comportamiento de la actividad de escaneo, las cadenas, los iconos y otros elementos de la UI. Debe usar ActivityRunner para iniciar la actividad de escaneo configurada por UISettings , que se muestra en el siguiente ejemplo.
Proporcionamos múltiples clases UISettings especializadas para diferentes escenarios de escaneo. Cada objeto UISettings tiene propiedades que se pueden cambiar a través de métodos de setter apropiados. Por ejemplo, puede personalizar la configuración de la cámara con setCameraSettings Metod.
Todas las clases UISettings disponibles se enumeran aquí.
En su actividad principal, cree objetos reconocidos que realicen el reconocimiento de imágenes, los configuren y los pondrán en el objeto ReconconatorBundle. Puede ver más información sobre los reconocedores disponibles y RecognizerBundle aquí.
Por ejemplo, para escanear el documento compatible, configure su reconocimiento así:
public class MyActivity extends Activity {
private BlinkIdMultiSideRecognizer mRecognizer ;
private RecognizerBundle mRecognizerBundle ;
@ Override
protected void onCreate ( Bundle bundle ) {
super . onCreate ( bundle );
// setup views, as you would normally do in onCreate callback
// create BlinkIdMultiSideRecognizer
mRecognizer = new BlinkIdMultiSideRecognizer ();
// bundle recognizers into RecognizerBundle
mRecognizerBundle = new RecognizerBundle ( mRecognizer );
}
} public class MyActivity : Activity () {
private lateinit var mRecognizer : BlinkIdMultiSideRecognizer
private lateinit var mRecognizerBundle : RecognizerBundle
override fun onCreate ( bundle : Bundle ) {
// setup views, as you would normally do in onCreate callback
// create BlinkIdMultiSideRecognizer
mRecognizer = BlinkIdMultiSideRecognizer ()
// build recognizers into RecognizerBundle
mRecognizerBundle = RecognizerBundle (mRecognizer)
}
} Comience el proceso de reconocimiento creando BlinkIdUISettings y llamando ActivityRunner.startActivityForResult :
// method within MyActivity from previous step
public void startScanning () {
// Settings for BlinkIdActivity
BlinkIdUISettings settings = new BlinkIdUISettings ( mRecognizerBundle );
// tweak settings as you wish
// Start activity
ActivityRunner . startActivityForResult ( this , MY_REQUEST_CODE , settings );
} // method within MyActivity from previous step
public fun startScanning () {
// Settings for BlinkIdActivity
val settings = BlinkIdUISettings (mRecognizerBundle)
// tweak settings as you wish
// Start activity
ActivityRunner .startActivityForResult( this , MY_REQUEST_CODE , settings)
} onActivityResult se llamará en su actividad después de que termine el escaneo, aquí puede obtener los resultados de escaneo.
@ Override
protected void onActivityResult ( int requestCode , int resultCode , Intent data ) {
super . onActivityResult ( requestCode , resultCode , data );
if ( requestCode == MY_REQUEST_CODE ) {
if ( resultCode == Activity . RESULT_OK && data != null ) {
// load the data into all recognizers bundled within your RecognizerBundle
mRecognizerBundle . loadFromIntent ( data );
// now every recognizer object that was bundled within RecognizerBundle
// has been updated with results obtained during scanning session
// you can get the result by invoking getResult on recognizer
BlinkIdMultiSideRecognizer . Result result = mRecognizer . getResult ();
if ( result . getResultState () == Recognizer . Result . State . Valid ) {
// result is valid, you can use it however you wish
}
}
}
} override protected fun onActivityResult ( requestCode : Int , resultCode : Int , data : Intent ) {
super .onActivityResult(requestCode, resultCode, data);
if (requestCode == MY_REQUEST_CODE ) {
if (resultCode == Activity . RESULT_OK && data != null ) {
// load the data into all recognizers bundled within your RecognizerBundle
mRecognizerBundle.loadFromIntent(data)
// now every recognizer object that was bundled within RecognizerBundle
// has been updated with results obtained during scanning session
// you can get the result by invoking getResult on recognizer
val result = mRecognizer.result
if (result.resultState == Recognizer . Result . State . Valid ) {
// result is valid, you can use it however you wish
}
}
}
} Para obtener más información sobre los reconocedores disponibles y RecognizerBundle , consulte ReconcEnizerBundle y reconocedores disponibles.
RecognizerRunnerFragment ) Si desea reutilizar nuestra actividad incorporada UX dentro de su propia actividad, use RecognizerRunnerFragment . Actividad que alojará RecognizerRunnerFragment debe implementar la interfaz ScanningOverlayBinder . Intentar agregar RecognizerRunnerFragment a la actividad que no implementa esa interfaz dará como resultado ClassCastException .
El ScanningOverlayBinder es responsable de devolver la implementación non-null de ScanningOverlay , clase que administrará la interfaz de usuario además de RecognizerRunnerFragment . No se recomienda crear su propia implementación ScanningOverlay , use una de nuestras implementaciones en su lugar aquí.
Aquí está el ejemplo mínimo para la actividad que alberga el RecognizerRunnerFragment :
public class MyActivity extends AppCompatActivity implements RecognizerRunnerFragment . ScanningOverlayBinder {
private BlinkIdMultiSideRecognizer mRecognizer ;
private RecognizerBundle mRecognizerBundle ;
private BlinkIdOverlayController mScanOverlay ;
private RecognizerRunnerFragment mRecognizerRunnerFragment ;
@ Override
protected void onCreate ( Bundle savedInstanceState ) {
super . onCreate ();
setContentView ( R . layout . activity_my_activity );
mScanOverlay = createOverlay ();
if ( null == savedInstanceState ) {
// create fragment transaction to replace R.id.recognizer_runner_view_container with RecognizerRunnerFragment
mRecognizerRunnerFragment = new RecognizerRunnerFragment ();
FragmentTransaction fragmentTransaction = getSupportFragmentManager (). beginTransaction ();
fragmentTransaction . replace ( R . id . recognizer_runner_view_container , mRecognizerRunnerFragment );
fragmentTransaction . commit ();
} else {
// obtain reference to fragment restored by Android within super.onCreate() call
mRecognizerRunnerFragment = ( RecognizerRunnerFragment ) getSupportFragmentManager (). findFragmentById ( R . id . recognizer_runner_view_container );
}
}
@ Override
@ NonNull
public ScanningOverlay getScanningOverlay () {
return mScanOverlay ;
}
private BlinkIdOverlayController createOverlay () {
// create BlinkIdMultiSideRecognizer
mRecognizer = new BlinkIdMultiSideRecognizer ();
// bundle recognizers into RecognizerBundle
mRecognizerBundle = new RecognizerBundle ( mRecognizer );
BlinkIdUISettings settings = new BlinkIdUISettings ( mRecognizerBundle );
return settings . createOverlayController ( this , mScanResultListener );
}
private final ScanResultListener mScanResultListener = new ScanResultListener () {
@ Override
public void onScanningDone ( @ NonNull RecognitionSuccessType recognitionSuccessType ) {
// pause scanning to prevent new results while fragment is being removed
mRecognizerRunnerFragment . getRecognizerRunnerView (). pauseScanning ();
// now you can remove the RecognizerRunnerFragment with new fragment transaction
// and use result within mRecognizer safely without the need for making a copy of it
// if not paused, as soon as this method ends, RecognizerRunnerFragments continues
// scanning. Note that this can happen even if you created fragment transaction for
// removal of RecognizerRunnerFragment - in the time between end of this method
// and beginning of execution of the transaction. So to ensure result within mRecognizer
// does not get mutated, ensure calling pauseScanning() as shown above.
}
@ Override
public void onUnrecoverableError ( @ NonNull Throwable throwable ) {
}
};
} package com.microblink.blinkid
class MainActivity : AppCompatActivity (), RecognizerRunnerFragment.ScanningOverlayBinder {
private lateinit var mRecognizer : BlinkIdMultiSideRecognizer
private lateinit var mRecognizerRunnerFragment : RecognizerRunnerFragment
private lateinit var mRecognizerBundle : RecognizerBundle
private lateinit var mScanOverlay : BlinkIdOverlayController
override fun onCreate ( savedInstanceState : Bundle ? ) {
super .onCreate(savedInstanceState)
if ( ! ::mScanOverlay.isInitialized) {
mScanOverlay = createOverlayController()
}
setContent {
this . run {
// viewBinding has to be set to 'true' in buildFeatures block of the build.gradle file
AndroidViewBinding ( RecognizerRunnerLayoutBinding ::inflate) {
mRecognizerRunnerFragment =
fragmentContainerView.getFragment< RecognizerRunnerFragment >()
}
}
}
}
override fun getScanningOverlay (): ScanningOverlay {
return mScanOverlay
}
private fun createOverlay (): BlinkIdOverlayController {
// create BlinkIdMultiSideRecognizer
val mRecognizer = BlinkIdMultiSideRecognizer ()
// bundle recognizers into RecognizerBundle
mRecognizerBundle = RecognizerBundle (mRecognizer)
val settings = BlinkIdUISettings (mRecognizerBundle)
return settings.createOverlayController( this , mScanResultListener)
}
private val mScanResultListener : ScanResultListener = object : ScanResultListener {
override fun onScanningDone ( p0 : RecognitionSuccessType ) {
// pause scanning to prevent new results while fragment is being removed
mRecognizerRunnerFragment !! .recognizerRunnerView !! .pauseScanning()
// now you can remove the RecognizerRunnerFragment with new fragment transaction
// and use result within mRecognizer safely without the need for making a copy of it
// if not paused, as soon as this method ends, RecognizerRunnerFragments continues
// scanning. Note that this can happen even if you created fragment transaction for
// removal of RecognizerRunnerFragment - in the time between end of this method
// and beginning of execution of the transaction. So to ensure result within mRecognizer
// does not get mutated, ensure calling pauseScanning() as shown above.
}
override fun onUnrecoverableError ( p0 : Throwable ) {
}
}
} Consulte las aplicaciones de muestra proporcionadas con el SDK para un ejemplo más detallado y asegúrese de que la orientación de su host de host esté configurada en nosensor o que cambie la configuración habilitada (es decir, no se reinicia cuando ocurre el cambio de configuración). Para obtener más información, consulte la sección de orientación de escaneo.
RecognizerRunnerViewEsta sección discute cómo incrustar reconocerRuRunnerView en su actividad de escaneo y realizar escaneo.
RecognizerRunnerView sea un campo miembro en su actividad. Esto se requiere porque necesitará pasar todos los eventos del ciclo de vida de la actividad a RecognizerRunnerView .portrait o landscape . Configuración sensor como orientación de la actividad de escaneo activará el reinicio completo de la actividad siempre que cambie la orientación del dispositivo. Esto proporcionará una experiencia de usuario muy pobre porque tanto la cámara como la biblioteca nativa Blinkid tendrán que reiniciarse cada vez. Hay medidas contra este comportamiento que se discuten más adelante.onCreate de su actividad, cree un nuevo RecognizerRunnerView , Set ReconcEnizerBundle que contenga reconocedores que serán utilizados por la vista, definirán CamereVentsListener que manejará eventos de cámara obligatorios, definirá ScanResultListener que recibirá una llamada cuando se haya completado el reconocimiento y luego se haya completado y luego llame a su método create . Después de eso, agregue sus vistas que deben diseñarse en la parte superior de la vista de la cámara.setLifecycle para habilitar el manejo automático de los eventos de LifeCeycle. Aquí está el ejemplo mínimo de integración de RecognizerRunnerView como la única vista en su actividad:
public class MyScanActivity extends AppCompatActivity {
private static final int PERMISSION_CAMERA_REQUEST_CODE = 42 ;
private RecognizerRunnerView mRecognizerRunnerView ;
private BlinkIdMultiSideRecognizer mRecognizer ;
private RecognizerBundle mRecognizerBundle ;
@ Override
protected void onCreate ( Bundle savedInstanceState ) {
super . onCreate ( savedInstanceState );
// create BlinkIdMultiSideRecognizer
mRecognizer = new BlinkIdMultiSideRecognizer ();
// bundle recognizers into RecognizerBundle
mRecognizerBundle = new RecognizerBundle ( mRecognizer );
// create RecognizerRunnerView
mRecognizerRunnerView = new RecognizerRunnerView ( this );
// set lifecycle to automatically call recognizer runner view lifecycle methods
mRecognizerRunnerView . setLifecycle ( getLifecycle ());
// associate RecognizerBundle with RecognizerRunnerView
mRecognizerRunnerView . setRecognizerBundle ( mRecognizerBundle );
// scan result listener will be notified when scanning is complete
mRecognizerRunnerView . setScanResultListener ( mScanResultListener );
// camera events listener will be notified about camera lifecycle and errors
mRecognizerRunnerView . setCameraEventsListener ( mCameraEventsListener );
setContentView ( mRecognizerRunnerView );
}
@ Override
public void onConfigurationChanged ( Configuration newConfig ) {
super . onConfigurationChanged ( newConfig );
// changeConfiguration is not handled by lifecycle events so call it manually
mRecognizerRunnerView . changeConfiguration ( newConfig );
}
private final CameraEventsListener mCameraEventsListener = new CameraEventsListener () {
@ Override
public void onCameraPreviewStarted () {
// this method is from CameraEventsListener and will be called when camera preview starts
}
@ Override
public void onCameraPreviewStopped () {
// this method is from CameraEventsListener and will be called when camera preview stops
}
@ Override
public void onError ( Throwable exc ) {
/**
* This method is from CameraEventsListener and will be called when
* opening of camera resulted in exception or recognition process
* encountered an error. The error details will be given in exc
* parameter.
*/
}
@ Override
@ TargetApi ( 23 )
public void onCameraPermissionDenied () {
/**
* Called in Android 6.0 and newer if camera permission is not given
* by user. You should request permission from user to access camera.
*/
requestPermissions ( new String []{ Manifest . permission . CAMERA }, PERMISSION_CAMERA_REQUEST_CODE );
/**
* Please note that user might have not given permission to use
* camera. In that case, you have to explain to user that without
* camera permissions scanning will not work.
* For more information about requesting permissions at runtime, check
* this article:
* https://developer.android.com/training/permissions/requesting.html
*/
}
@ Override
public void onAutofocusFailed () {
/**
* This method is from CameraEventsListener will be called when camera focusing has failed.
* Camera manager usually tries different focusing strategies and this method is called when all
* those strategies fail to indicate that either object on which camera is being focused is too
* close or ambient light conditions are poor.
*/
}
@ Override
public void onAutofocusStarted ( Rect [] areas ) {
/**
* This method is from CameraEventsListener and will be called when camera focusing has started.
* You can utilize this method to draw focusing animation on UI.
* Areas parameter is array of rectangles where focus is being measured.
* It can be null on devices that do not support fine-grained camera control.
*/
}
@ Override
public void onAutofocusStopped ( Rect [] areas ) {
/**
* This method is from CameraEventsListener and will be called when camera focusing has stopped.
* You can utilize this method to remove focusing animation on UI.
* Areas parameter is array of rectangles where focus is being measured.
* It can be null on devices that do not support fine-grained camera control.
*/
}
};
private final ScanResultListener mScanResultListener = new ScanResultListener () {
@ Override
public void onScanningDone ( @ NonNull RecognitionSuccessType recognitionSuccessType ) {
// this method is from ScanResultListener and will be called when scanning completes
// you can obtain scanning result by calling getResult on each
// recognizer that you bundled into RecognizerBundle.
// for example:
BlinkIdMultiSideRecognizer . Result result = mRecognizer . getResult ();
if ( result . getResultState () == Recognizer . Result . State . Valid ) {
// result is valid, you can use it however you wish
}
// Note that mRecognizer is stateful object and that as soon as
// scanning either resumes or its state is reset
// the result object within mRecognizer will be changed. If you
// need to create a immutable copy of the result, you can do that
// by calling clone() on it, for example:
BlinkIdMultiSideRecognizer . Result immutableCopy = result . clone ();
// After this method ends, scanning will be resumed and recognition
// state will be retained. If you want to prevent that, then
// you should call:
mRecognizerRunnerView . resetRecognitionState ();
// Note that reseting recognition state will clear internal result
// objects of all recognizers that are bundled in RecognizerBundle
// associated with RecognizerRunnerView.
// If you want to pause scanning to prevent receiving recognition
// results or mutating result, you should call:
mRecognizerRunnerView . pauseScanning ();
// if scanning is paused at the end of this method, it is guaranteed
// that result within mRecognizer will not be mutated, therefore you
// can avoid creating a copy as described above
// After scanning is paused, you will have to resume it with:
mRecognizerRunnerView . resumeScanning ( true );
// boolean in resumeScanning method indicates whether recognition
// state should be automatically reset when resuming scanning - this
// includes clearing result of mRecognizer
}
};
} Si la propiedad de screenOrientation de Activity en AndroidManifest.xml se establece en sensor , fullSensor o similar, la actividad se reiniciará cada vez que el dispositivo cambie la orientación de retrato a paisaje y viceversa. Al reiniciar la actividad, se onPause , se llamará a los métodos onStop y onDestroy y luego se creará una nueva actividad de nuevo. Este es un problema potencial para la actividad de escaneo porque en su ciclo de vida controla tanto la cámara como la biblioteca nativa: reiniciar la actividad activará tanto el reinicio de la cámara como la biblioteca nativa. Este es un problema porque cambiar la orientación desde el paisaje hasta el retrato y viceversa será muy lento, degradando así una experiencia de usuario. No recomendamos tal configuración.
Para el caso, recomendamos establecer su actividad de escaneo en modo portrait o landscape y manejar cambios de orientación al dispositivo manualmente. Para ayudarlo con esto, RecognizerRunnerView admite agregarle vistas infantiles que se girarán independientemente de screenOrientation de la actividad. Agrega una vista que desea girar (como una vista que contiene botones, mensajes de estado, etc.) para RecognizerRunnerView con el método AddChildView. El segundo parámetro del método es un booleano que define si la vista que está agregando se girará con el dispositivo. Para definir las orientaciones permitidas, implementa la interfaz OrientationAllowedListener y agrégala a RecognizerRunnerView con el método setOrientationAllowedListener . Esta es la forma recomendada de la superposición de la cámara giratoria.
Sin embargo, si realmente desea establecer la propiedad screenOrientation en sensor o similar y quiere que Android maneje los cambios de orientación de su actividad de escaneo, entonces recomendamos establecer la propiedad configChanges de su actividad a orientation|screenSize . Esto le dirá a Android que no reinicie su actividad cuando cambie la orientación del dispositivo. En cambio, se llamará al método onConfigurationChanged de Activity para que se pueda notificar la actividad del cambio de configuración. En su implementación de este método, debe llamar al método changeConfiguration de RecognizerView para que pueda adaptar la superficie de su cámara y las vistas infantiles a una nueva configuración.
Esta sección describirá cómo usar la API directa para reconocer los mapas de bits de Android sin la necesidad de la cámara. Puede usar API directo en cualquier lugar desde su aplicación, no solo de actividades.
El rendimiento del reconocimiento de imágenes depende en gran medida de la calidad de las imágenes de entrada. Cuando se usa la administración de nuestra cámara (escaneando desde una cámara), hacemos todo lo posible para obtener marcos de cámara con la mejor calidad posible para el dispositivo usado. Por otro lado, cuando se usa la API directa, debe proporcionar imágenes de alta calidad sin desenfoque y resplandor para un reconocimiento exitoso.
Bitmaps de Android obtenidos, por ejemplo, de la galería. Use ReconociseBitMap o ReconseBitMapWithReconselers.Images de video que se construyen a partir de marcos de video de cámara personalizados, por ejemplo, cuando usa su propia administración de cámaras de terceros o de terceros. El reconocimiento se optimizará para la velocidad y dependerá de la redundancia del tiempo entre los marcos de video consecutivos para obtener el mejor resultado de reconocimiento posible. Use ReconocieVideoMage o ReconocevideoMage con notificadores.Images fijas cuando necesita escaneo completo de imágenes individuales o pocas que no forman parte de la transmisión de video y desea obtener los mejores resultados posibles de la única InputImage . El tipo de InputImage proviene de nuestro SDK o se puede crear utilizando ImageBuilder. Use ReconocizeStillImage o ReconocizeStillImage con reconocedores.Aquí está el ejemplo mínimo de uso de la API directa para reconocer Android Bitmap:
public class DirectAPIActivity extends Activity {
private RecognizerRunner mRecognizerRunner ;
private BlinkIdMultiSideRecognizer mRecognizer ;
private RecognizerBundle mRecognizerBundle ;
@ Override
protected void onCreate ( Bundle savedInstanceState ) {
super . onCreate ();
// initialize your activity here
// create BlinkIdMultiSideRecognizer
mRecognizer = new BlinkIdMultiSideRecognizer ();
// bundle recognizers into RecognizerBundle
mRecognizerBundle = new RecognizerBundle ( mRecognizer );
try {
mRecognizerRunner = RecognizerRunner . getSingletonInstance ();
} catch ( FeatureNotSupportedException e ) {
Toast . makeText ( this , "Feature not supported! Reason: " + e . getReason (). getDescription (), Toast . LENGTH_LONG ). show ();
finish ();
return ;
}
mRecognizerRunner . initialize ( this , mRecognizerBundle , new DirectApiErrorListener () {
@ Override
public void onRecognizerError ( Throwable t ) {
Toast . makeText ( DirectAPIActivity . this , "There was an error in initialization of Recognizer: " + t . getMessage (), Toast . LENGTH_SHORT ). show ();
finish ();
}
});
}
@ Override
protected void onResume () {
super . onResume ();
// start recognition
Bitmap bitmap = BitmapFactory . decodeFile ( "/path/to/some/file.jpg" );
mRecognizerRunner . recognizeBitmap ( bitmap , Orientation . ORIENTATION_LANDSCAPE_RIGHT , mScanResultListener );
}
@ Override
protected void onDestroy () {
super . onDestroy ();
mRecognizerRunner . terminate ();
}
private final ScanResultListener mScanResultListener = new ScanResultListener () {
@ Override
public void onScanningDone ( @ NonNull RecognitionSuccessType recognitionSuccessType ) {
// this method is from ScanResultListener and will be called
// when scanning completes
// you can obtain scanning result by calling getResult on each
// recognizer that you bundled into RecognizerBundle.
// for example:
BlinkIdMultiSideRecognizer . Result result = mRecognizer . getResult ();
if ( result . getResultState () == Recognizer . Result . State . Valid ) {
// result is valid, you can use it however you wish
}
}
};
} ScanResultListener.onscanningDone El método se llama para cada imagen de entrada que envía al reconocimiento. Puede llamar al método RecognizerRunner.recognize* varias veces con diferentes imágenes del mismo documento para una mejor precisión de lectura hasta que obtenga un resultado exitoso en el método onScanningDone del oyente. Esto es útil cuando está utilizando su propia administración de cámaras o de terceros.
String (analizador) Algunos reconocedores apoyan el reconocimiento de String . Se pueden usar a través de la API directa para analizar la String y devolver datos al igual que cuando se usan en una imagen de entrada. Cuando se realiza el reconocimiento en String , no hay necesidad de OCR. String de entrada se usa de la misma manera que la salida OCR se usa cuando se reconoce la imagen.
El reconocimiento de String se puede realizar de la misma manera que el reconocimiento de la imagen, descrito en la sección anterior.
La única diferencia es que se debe llamar a uno de los métodos Singleton de reconocimiento de reconocimiento para el reconocimiento de la cadena:
RecognizerRunner Singleton de Direct API es una máquina de estado que puede estar en uno de los 3 estados: OFFLINE , READY y WORKING .
RecognizerRunner Singleton, estará en estado OFFLINE .RecognizerRunner llamando al método Initialize. Si llama al método initialize mientras RecognizerRunner no está en estado OFFLINE , obtendrá IllegalStateException .RecognizerRunner se trasladará al estado READY . Ahora puede llamar a cualquiera de los métodos recognize* .recognize* , RecognizerRunner se trasladará al estado WORKING . Si intenta llamar a estos métodos mientras que RecognizerRunner no está en estado READY , obtendrá IllegalStateExceptionRecognizerRunner's desde el hilo de la interfaz de usuarioRecognizerRunner primero regresa al estado READY y luego llama al método OnScanningDone del ScanResultListener proporcionado.onScanningDone de ScanResultListener se llamará en el subproceso de procesamiento de fondo, así que asegúrese de no realizar operaciones de UI en esta devolución de llamada. También tenga en cuenta que hasta que se complete el método onScanningDone , RecognizerRunner no realizará el reconocimiento de otra imagen o cadena, incluso si se ha llamado a alguno de los métodos recognize* justo después de la transición al estado READY . Esto es para garantizar que los resultados de los reconocedores agrupados dentro de RecognizerBundle asociado con RecognizerRunner no se modifiquen mientras posiblemente se usan dentro del método onScanningDone .terminate , RecognizerRunner Singleton lanzará todos sus recursos internos. Tenga en cuenta que incluso después de llamar, terminate puede recibir un evento onScanningDone si hubo trabajo en progreso cuando se llamó terminate .terminate se puede llamar desde cualquier estado RecognizerRunner de SingletonRecognizerRunner Singleton con el método getCurrentState Tanto reconocerRunnerView como RecognizerRunner usan el mismo singleton interno que administra el código nativo. Este singleton maneja la inicialización y la terminación de la biblioteca nativa y la propagación de los reconocedores a la biblioteca nativa. Es posible usar RecognizerRunnerView y RecognizerRunner juntos, ya que Singleton interno se asegurará de que se utilicen la sincronización correcta y la configuración de reconocimiento correcta. Si te encuentras con problemas mientras usas RecognizerRunner en combinación con RecognizerRunnerView , ¡háganoslo saber!
Cuando está utilizando el reconocimiento combinado y se requieren imágenes de ambos lados de documentos, debe llamar a RecognizerRunner.recognize* varias veces. Llámelo primero con las imágenes del primer lado del documento, hasta que se lea, y luego con las imágenes del segundo lado. El reconocimiento combinado cambia automáticamente al escaneo del segundo lateral, después de haber leído con éxito el primer lado. Para ser notificado cuando se complete el primer escaneo lateral, debe establecer el FirstSiderCognitionCallback a través de MetAdatAcallbacks. Si no necesita esa información, por ejemplo, cuando solo tiene una imagen para cada lado del documento, no establezca el FirstSideRecognitionCallback y verifique el reconocimiento de UCCESSTYPE en ScanResultListener.onscanningDone, después de que se haya procesado la segunda imagen lateral.
BlinkIdUISettings y BlinkIdOverlayController BlinkIdOverlayController implementa una nueva interfaz de usuario para escanear documentos de identidad, que está diseñado de manera óptima para usarse con New BlinkIdMultiSideRecognizer y BlinkIdSingleSideRecognizer . Implementa varias características nuevas:
La nueva interfaz de usuario permite al usuario escanear el documento en cualquier ángulo, en cualquier orientación. Recomendamos forzar la orientación del paisaje si escanea códigos de barras en la parte posterior, porque en esa orientación la tasa de éxito será mayor.
Para iniciar una actividad incorporada que utiliza BlinkIdOverlayController use BlinkIdUISettings .
Para personalizar la superposición, proporcione su recurso de estilo personalizado a través del método BlinkIdUISettings.setOverlayViewStyle() o a través del constructor ReticleOverlayView . Puede personalizar elementos etiquetados en capturas de pantalla anteriores proporcionando los siguientes atributos en su estilo:
salida
mb_exitScanDrawable - icono dibujableBlinkIdUISettings.setShowCancelButton(false)antorcha
mb_torchOnDrawable - icono dibujable que se muestra cuando la antorcha está habilitadamb_torchOffDrawable - icono dibujable que se muestra cuando la antorcha está deshabilitadaBlinkIdUISettings.setShowTorchButton(false)instrucciones
mb_instructionsTextAppearance - estilo que se utilizará como android:textAppearancemb_instructionsBackgroundDrawable - dibujable utilizado para el fondomb_instructionsBackgroundColor - Color utilizado para el fondoadvertencia de linterna
mb_flashlightWarningTextAppearance - estilo que se utilizará como android:textAppearancemb_flashlightWarningBackgroundDrawable - dibujable utilizado para el fondoBlinkIdUISettings.setShowFlashlightWarning(false)icono de tarjeta
mb_cardFrontDrawable - icono dibujable que se muestra durante la animación de volteo de la tarjeta, que representa el lado frontal de la tarjetamb_cardBackDrawable - Icono Dibujable que se muestra durante la animación de Flip de la tarjeta, que representa el lado posterior de la tarjetaretículo
mb_reticleDefaultDrawable - Drawable que se muestra cuando la retícula está en estado neutralmb_reticleSuccessDrawable - Drawable que se muestra cuando la retícula está en estado de éxito (el escaneo fue exitoso)mb_reticleErrorDrawable - dibujable se muestra cuando la retícula está en estado de errormb_reticleColor - Color utilizado para el elemento de retícula giratoriamb_reticleDefaultColor - Color utilizado para la retícula en estado neutralmb_reticleErrorColor - Color utilizado para la retícula en estado de errormb_successFlashColor - Color utilizado para el efecto de flash en el escaneo exitoso Para personalizar la visibilidad y el estilo de estos dos diálogos, use métodos proporcionados en BlinkIdUISettings .
El método para controlar la visibilidad del diálogo Introducción es BlinkIdUISettings.setShowIntroductionDialog(boolean showIntroductionDialog) .
El método para controlar la visibilidad del diálogo de incorporación es BlinkIdUISettings.setShowOnboardingInfo(boolean showOnboardingInfo) y se establece en verdadero de forma predeterminada, lo que significa que se mostrará el diálogo de introducción.
También hay un método para controlar el retraso de "mostrar ayuda?" Montada de herramientas que se muestra sobre el botón de ayuda. El botón en sí se mostrará si el método anterior para mostrar la incorporación es cierto. El método para establecer la longitud de retraso de la información sobre herramientas es BlinkIdUISettings.setShowTooltipTimeIntervalMs(long showTooltipTimeIntervalMs) . El parámetro de tiempo se establece en milisegundos.
La configuración predeterminada del retraso es de 12 segundos (12000 milisegundos).
Personalización y tema de estos elementos de introducción e incorporación se puede hacer de la misma manera que se explica en el capítulo anterior, proporcionando los siguientes atributos:
botón de ayuda
mb_helpButtonDrawable - Drawable que se muestra cuando el botón de ayuda está habilitadomb_helpButtonBackgroundColor - color utilizado para el fondo del botón de ayudamb_helpButtonQuestionmarkColor - Color utilizado para el botón de ayuda en primer planoayuda para la información sobre herramientas
mb_helpTooltipBackground - Drawable que se muestra como un fondo cuando aparece la información sobre herramientas de ayudamb_helpTooltipColor - Color utilizado para el fondo de información sobre herramientas de ayudamb_helpTooltipTextAppearance - estilo que se utilizará como android:textAppearancediálogo de introducción
mb_introductionBackgroundColor - Color utilizado para el fondo de la pantalla de introducciónmb_introductionTitleTextAppearance - estilo que se utilizará como android:textAppearancemb_introductionMessageTextAppearance - estilo que se utilizará como android:textAppearancemb_introductionButtonTextAppearance - estilo que se utilizará como android:textAppearanceBlinkIdUISettings.setShowIntroductionDialog(false)diálogo de incorporación
mb_onboardingBackgroundColor - Color utilizado para las pantallas de incorporación de fondomb_onboardingPageIndicatorColor - Color utilizado para indicadores de página circulares en las pantallas de incorporaciónmb_onboardingTitleTextAppearance - estilo que se utilizará como android:textAppearancemb_onboardingMessageTextAppearance - estilo que se utilizará como android:textAppearancemb_onboardingButtonTextAppearance - estilo que se utilizará como android:textAppearanceBlinkIdUISettings.setShowOnboardingInfo(false) Los diálogos de alerta llamados por el SDK tienen su propio conjunto de propiedades que pueden modificarse en styles.xml .
MB_alert_dialog es un tema que extiende Theme.AppCompat.Light.Dialog.Alert Temo y utiliza los colores predeterminados del tema de la aplicación. Para cambiar los atributos en estos diálogos de alerta sin cambiar otros atributos en la aplicación del usuario, el tema MB_alert_dialog debe sobrescribirse.
< style name = " MB_alert_dialog " parent = " Theme.AppCompat.Light.Dialog.Alert " >
< item name = " android:textSize " >TEXT_SIZE</ item >
< item name = " android:background " >COLOR</ item >
< item name = " android:textColorPrimary " >COLOR</ item >
< item name = " colorAccent " >COLOR</ item >
</ style >Los atributos que no están sobrescribidos utilizarán los colores y tamaños predeterminados del tema de la aplicación.
colorAccent Attibibe se usa para cambiar el color del botón de diálogo de alerta. Si el atributo colorAccent del tema del tema de la aplicación se cambia en otro lugar, este color de botón de diálogo de alerta también se cambiará. Sin embargo, sobrescribir el tema MB_alert_dialog y este atributo dentro de él asegurarán que solo se cambie el color del botón en el diálogo de alerta de Microblink SDK. Si el tema de la aplicación extiende un tema del conjunto MaterialComponents (por ejemplo, Theme.MaterialComponents.Light.NoActionBar ), el color del botón mencionado anteriormente solo se puede cambiar sobrescribiendo el atributo colorOnPrimary en lugar de atributo colorAccent .
DocumentUISettings DocumentUISettings lanza una actividad que utiliza BlinkIdOverlayController con UI alternativa. Es el más adecuado para escanear el lado de documento único de varios documentos de la tarjeta y no debe usarse con reconocedores combinados, ya que no proporciona instrucciones de usuario sobre cuándo cambiar a la parte posterior.
LegacyDocumentVerificationUISettings LegacyDocumentVerificationUISettings lanza una actividad que utiliza BlinkIdOverlayController con UI alternativa. Es el más adecuado para los reconocedores combinados porque administra el escaneo de múltiples lados de documentos en la apertura de la cámara única y guía al usuario a través del proceso de escaneo. También se puede utilizar para un escaneo único de tarjetas de identificación, pasaportes, licencias de conducir, etc.
Las cadenas utilizadas en actividades y superposiciones incorporadas se pueden localizar en cualquier idioma. Si está utilizando RecognizerRunnerView (consulte este capítulo para obtener más información) en su actividad o fragmento de escaneo personalizado, debe manejar la localización como en cualquier otra aplicación de Android. RecognizerRunnerView no usa cadenas ni dibujos, solo usa activos de la carpeta de assets/microblink . Esos activos no deben tocarse, ya que son necesarios para que el reconocimiento funcione correctamente.
Sin embargo, si utiliza nuestras actividades o superposiciones incorporadas, utilizarán recursos empacados dentro de LibBlinkID.aar para mostrar cadenas e imágenes en la parte superior de la vista de la cámara. Ya hemos preparado cadenas para varios idiomas que puede usar fuera de la caja. También puede modificar esas cadenas, o puede agregar su propio idioma.
Para usar un idioma, debe habilitarlo desde el código:
Para usar un cierto idioma, en el inicio de la aplicación, antes de abrir cualquier componente de UI desde el SDK, debe llamar a Method LanguageUtils.setLanguageAndCountry(language, country, context) . Por ejemplo, puede establecer un lenguaje en croata así:
// define BlinkID language
LanguageUtils . setLanguageAndCountry ( "hr" , "" , this ); Blinkid se puede traducir fácilmente a otros idiomas. La carpeta res en LibBlinkID.aar Archive tiene values de carpeta que contiene strings.xml : este archivo contiene cadenas inglesas. In order to make eg croatian translation, create a folder values-hr in your project and put the copy of strings.xml inside it (you might need to extract LibBlinkID.aar archive to access those files). Then, open that file and translate the strings from English into Croatian.
To modify an existing string, the best approach would be to:
strings.xml in folder res/values-hr of the LibBlinkID.aar archive<string name="MBBack">Back</string>strings.xml in the folder res/values-hr , if it doesn't already exist<string name="MBBack">Natrag</string>RecognizerRunner and RecognizerRunnerViewProcessing events, also known as Metadata callbacks are purely intended for giving processing feedback on UI or to capture some debug information during development of your app using BlinkID SDK. For that reason, built-in activities and fragments handle those events internally. If you need to handle those events yourself, you need to use either RecognizerRunnerView or RecognizerRunner.
Callbacks for all events are bundled into the MetadataCallbacks object. Both RecognizerRunner and RecognizerRunnerView have methods which allow you to set all your callbacks.
We suggest that you check for more information about available callbacks and events to which you can handle in the javadoc for MetadataCallbacks class.
Please note that both those methods need to pass information about available callbacks to the native code and for efficiency reasons this is done at the time setMetadataCallbacks method is called and not every time when change occurs within the MetadataCallbacks object. This means that if you, for example, set QuadDetectionCallback to MetadataCallbacks after you already called setMetadataCallbacks method, the QuadDetectionCallback will not be registered with the native code and you will not receive its events.
Similarly, if you, for example, remove the QuadDetectionCallback from MetadataCallbacks object after you already called setMetadataCallbacks method, your app will crash with NullPointerException when our processing code attempts to invoke the method on removed callback (which is now set to null ). We deliberately do not perform null check here because of two reasons:
null callback, while still being registered to native code is illegal state of your program and it should therefore crash Remember , each time you make some changes to MetadataCallbacks object, you need to apply those changes to to your RecognizerRunner or RecognizerRunnerView by calling its setMetadataCallbacks method.
Recognizer concept and RecognizerBundle This section will first describe what is a Recognizer and how it should be used to perform recognition of the images, videos and camera stream. Next, we will describe how RecognizerBundle can be used to tweak the recognition procedure and to transfer Recognizer objects between activities.
RecognizerBundle is an object which wraps the Recognizers and defines settings about how recognition should be performed. Besides that, RecognizerBundle makes it possible to transfer Recognizer objects between different activities, which is required when using built-in activities to perform scanning, as described in first scan section, but is also handy when you need to pass Recognizer objects between your activities.
List of all available Recognizer objects, with a brief description of each Recognizer , its purpose and recommendations how it should be used to get best performance and user experience, can be found here .
Recognizer concept The Recognizer is the basic unit of processing within the BlinkID SDK. Its main purpose is to process the image and extract meaningful information from it. As you will see later, the BlinkID SDK has lots of different Recognizer objects that have various purposes.
Each Recognizer has a Result object, which contains the data that was extracted from the image. The Result object is a member of corresponding Recognizer object and its lifetime is bound to the lifetime of its parent Recognizer object. If you need your Result object to outlive its parent Recognizer object, you must make a copy of it by calling its method clone() .
Every Recognizer is a stateful object, that can be in two states: idle state and working state . While in idle state , you can tweak Recognizer object's properties via its getters and setters. After you bundle it into a RecognizerBundle and use either RecognizerRunner or RecognizerRunnerView to run the processing with all Recognizer objects bundled within RecognizerBundle , it will change to working state where the Recognizer object is being used for processing. While being in working state , you cannot tweak Recognizer object's properties. If you need to, you have to create a copy of the Recognizer object by calling its clone() , then tweak that copy, bundle it into a new RecognizerBundle and use reconfigureRecognizers to ensure new bundle gets used on processing thread.
While Recognizer object works, it changes its internal state and its result. The Recognizer object's Result always starts in Empty state. When corresponding Recognizer object performs the recognition of given image, its Result can either stay in Empty state (in case Recognizer failed to perform recognition), move to Uncertain state (in case Recognizer performed the recognition, but not all mandatory information was extracted), move to StageValid state (in case Recognizer successfully scanned one part/side of the document and there are more fields to extract) or move to Valid state (in case Recognizer performed recognition and all mandatory information was successfully extracted from the image).
As soon as one Recognizer object's Result within RecognizerBundle given to RecognizerRunner or RecognizerRunnerView changes to Valid state, the onScanningDone callback will be invoked on same thread that performs the background processing and you will have the opportunity to inspect each of your Recognizer objects' Results to see which one has moved to Valid state.
As already stated in section about RecognizerRunnerView , as soon as onScanningDone method ends, the RecognizerRunnerView will continue processing new camera frames with same Recognizer objects, unless paused. Continuation of processing or resetting recognition will modify or reset all Recognizer objects's Results . When using built-in activities, as soon as onScanningDone is invoked, built-in activity pauses the RecognizerRunnerView and starts finishing the activity, while saving the RecognizerBundle with active Recognizer objects into Intent so they can be transferred back to the calling activities.
RecognizerBundle The RecognizerBundle is wrapper around Recognizers objects that can be used to transfer Recognizer objects between activities and to give Recognizer objects to RecognizerRunner or RecognizerRunnerView for processing.
The RecognizerBundle is always constructed with array of Recognizer objects that need to be prepared for recognition (ie their properties must be tweaked already). The varargs constructor makes it easier to pass Recognizer objects to it, without the need of creating a temporary array.
The RecognizerBundle manages a chain of Recognizer objects within the recognition process. When a new image arrives, it is processed by the first Recognizer in chain, then by the second and so on, iterating until a Recognizer object's Result changes its state to Valid or all of the Recognizer objects in chain were invoked (none getting a Valid result state). If you want to invoke all Recognizers in the chain, regardless of whether some Recognizer object's Result in chain has changed its state to Valid or not, you can allow returning of multiple results on a single image.
You cannot change the order of the Recognizer objects within the chain - no matter the order in which you give Recognizer objects to RecognizerBundle , they are internally ordered in a way that provides best possible performance and accuracy. Also, in order for BlinkID SDK to be able to order Recognizer objects in recognition chain in the best way possible, it is not allowed to have multiple instances of Recognizer objects of the same type within the chain. Attempting to do so will crash your application.
Recognizer objects between activities Besides managing the chain of Recognizer objects, RecognizerBundle also manages transferring bundled Recognizer objects between different activities within your app. Although each Recognizer object, and each its Result object implements Parcelable interface, it is not so straightforward to put those objects into Intent and pass them around between your activities and services for two main reasons:
Result object is tied to its Recognizer object, which manages lifetime of the native Result object.Result object often contains large data blocks, such as images, which cannot be transferred via Intent because of Android's Intent transaction data limit. Although the first problem can be easily worked around by making a copy of the Result and transfer it independently, the second problem is much tougher to cope with. This is where, RecognizerBundle's methods saveToIntent and loadFromIntent come to help, as they ensure the safe passing of Recognizer objects bundled within RecognizerBundle between activities according to policy defined with method setIntentDataTransferMode :
STANDARD , the Recognizer objects will be passed via Intent using normal Intent transaction mechanism , which is limited by Android's Intent transaction data limit. This is same as manually putting Recognizer objects into Intent and is OK as long as you do not use Recognizer objects that produce images or other large objects in their Results .OPTIMISED , the Recognizer objects will be passed via internal singleton object and no serialization will take place. This means that there is no limit to the size of data that is being passed. This is also the fastest transfer method, but it has a serious drawback - if Android kills your app to save memory for other apps and then later restarts it and redelivers Intent that should contain Recognizer objects, the internal singleton that should contain saved Recognizer objects will be empty and data that was being sent will be lost. You can easily provoke that condition by choosing No background processes under Limit background processes in your device's Developer options , and then switch from your app to another app and then back to your app.PERSISTED_OPTIMISED , the Recognizer objects will be passed via internal singleton object (just like in OPTIMISED mode) and will additionaly be serialized into a file in your application's private folder. In case Android restarts your app and internal singleton is empty after re-delivery of the Intent , the data will be loaded from file and nothing will be lost. The files will be automatically cleaned up when data reading takes place. Just like OPTIMISED , this mode does not have limit to the size of data that is being passed and does not have a drawback that OPTIMISED mode has, but some users might be concerned about files to which data is being written.onSaveInstanceState and save bundle back to file by calling its saveState method. Also, after saving state, you should ensure that you clear saved state in your onResume , as onCreate may not be called if activity is not restarted, while onSaveInstanceState may be called as soon as your activity goes to background (before onStop ), even though activity may not be killed at later time.OPTIMISED mode to transfer large data and image between activities or create your own mechanism for data transfer. Note that your application's private folder is only accessible by your application and your application alone, unless the end-user's device is rooted. This section will give a list of all Recognizer objects that are available within BlinkID SDK, their purpose and recommendations how they should be used to get best performance and user experience.
The FrameGrabberRecognizer is the simplest recognizer in BlinkID SDK, as it does not perform any processing on the given image, instead it just returns that image back to its FrameCallback . Its Result never changes state from Empty.
This recognizer is best for easy capturing of camera frames with RecognizerRunnerView . Note that Image sent to onFrameAvailable are temporary and their internal buffers all valid only until the onFrameAvailable method is executing - as soon as method ends, all internal buffers of Image object are disposed. If you need to store Image object for later use, you must create a copy of it by calling clone .
Also note that FrameCallback interface extends Parcelable interface, which means that when implementing FrameCallback interface, you must also implement Parcelable interface.
This is especially important if you plan to transfer FrameGrabberRecognizer between activities - in that case, keep in mind that the instance of your object may not be the same as the instance on which onFrameAvailable method gets called - the instance that receives onFrameAvailable calls is the one that is created within activity that is performing the scan.
The SuccessFrameGrabberRecognizer is a special Recognizer that wraps some other Recognizer and impersonates it while processing the image. However, when the Recognizer being impersonated changes its Result into Valid state, the SuccessFrameGrabberRecognizer captures the image and saves it into its own Result object.
Since SuccessFrameGrabberRecognizer impersonates its slave Recognizer object, it is not possible to give both concrete Recognizer object and SuccessFrameGrabberRecognizer that wraps it to same RecognizerBundle - doing so will have the same result as if you have given two instances of same Recognizer type to the RecognizerBundle - it will crash your application.
This recognizer is best for use cases when you need to capture the exact image that was being processed by some other Recognizer object at the time its Result became Valid . When that happens, SuccessFrameGrabber's Result will also become Valid and will contain described image. That image can then be retrieved with getSuccessFrame() method.
Unless stated otherwise for concrete recognizer, single side BlinkID recognizers from this list can be used in any context, but they work best with BlinkIdUISettings and DocumentScanUISettings , with UIs best suited for document scanning.
Combined recognizers should be used with BlinkIdUISettings . They manage scanning of multiple document sides in the single camera opening and guide the user through the scanning process. Some combined recognizers support scanning of multiple document types, but only one document type can be scanned at a time.
The BlinkIdSingleSideRecognizer scans and extracts data from the single side of the supported document. You can find the list of the currently supported documents here. We will continue expanding this recognizer by adding support for new document types in the future. Star this repo to stay updated.
The BlinkIdSingleSideRecognizer works best with the BlinkIdUISettings and BlinkIdOverlayController .
Use BlinkIdMultiSideRecognizer for scanning both sides of the supported document. First, it scans and extracts data from the front, then scans and extracts data from the back, and finally, combines results from both sides. The BlinkIdMultiSideRecognizer also performs data matching and returns a flag if the extracted data captured from the front side matches the data from the back. You can find the list of the currently supported documents here. We will continue expanding this recognizer by adding support for new document types in the future. Star this repo to stay updated.
The BlinkIdMultiSideRecognizer works best with the BlinkIdUISettings and BlinkIdOverlayController .
The MrtdRecognizer is used for scanning and data extraction from the Machine Readable Zone (MRZ) of the various Machine Readable Travel Documents (MRTDs) like ID cards and passports. This recognizer is not bound to the specific country, but it can be configured to only return data that match some criteria defined by the MrzFilter .
You can find information about usage context at the beginning of this section.
The MrtdCombinedRecognizer scans Machine Readable Zone (MRZ) after scanning the full document image and face image (usually MRZ is on the back side and face image is on the front side of the document). Internally, it uses DocumentFaceRecognizer for obtaining full document image and face image as the first step and then MrtdRecognizer for scanning the MRZ.
You can find information about usage context at the beginning of this section.
The PassportRecognizer is used for scanning and data extraction from the Machine Readable Zone (MRZ) of the various passport documents. This recognizer also returns face image from the passport.
You can find information about usage context at the beginning of this section.
The VisaRecognizer is used for scanning and data extraction from the Machine Readable Zone (MRZ) of the various visa documents. This recognizer also returns face image from the visa document.
You can find information about usage context at the beginning of this section.
The IdBarcodeRecognizer is used for scanning barcodes from various ID cards. Check this document to see the list of supported document types.
You can find information about usage context at the beginning of this section.
The DocumentFaceRecognizer is a special type of recognizer that only returns face image and full document image of the scanned document. It does not extract document fields like first name, last name, etc. This generic recognizer can be used to obtain document images in cases when specific support for some document type is not available.
You can find information about usage context at the beginning of this section.
You need to ensure that the final app gets all resources required by BlinkID . At the time of writing this documentation, Android does not have support for combining multiple AAR libraries into single fat AAR. The problem is that resource merging is done while building application, not while building AAR, so application must be aware of all its dependencies. There is no official Android way of "hiding" third party AAR within your AAR.
This problem is usually solved with transitive Maven dependencies, ie when publishing your AAR to Maven you specify dependencies of your AAR so they are automatically referenced by app using your AAR. Besides this, there are also several other approaches you can try:
RecognizerRunnerView ). You can perform custom UI integration while taking care that all resources (strings, layouts, images, ...) used are solely from your AAR, not from BlinkID . Then, in your AAR you should not reference LibBlinkID.aar as gradle dependency, instead you should unzip it and copy its assets to your AAR's assets folder, its classes.jar to your AAR's lib folder (which should be referenced by gradle as jar dependency) and contents of its jni folder to your AAR's src/main/jniLibs folder.BlinkID is distributed with ARMv7 and ARM64 native library binaries.
ARMv7 architecture gives the ability to take advantage of hardware accelerated floating point operations and SIMD processing with NEON. This gives BlinkID a huge performance boost on devices that have ARMv7 processors. Most new devices (all since 2012.) have ARMv7 processor so it makes little sense not to take advantage of performance boosts that those processors can give. Also note that some devices with ARMv7 processors do not support NEON and VFPv4 instruction sets, most popular being those based on NVIDIA Tegra 2, ARM Cortex A9 and older. Since these devices are old by today's standard, BlinkID does not support them. For the same reason, BlinkID does not support devices with ARMv5 ( armeabi ) architecture.
ARM64 is the new processor architecture that most new devices use. ARM64 processors are very powerful and also have the possibility to take advantage of new NEON64 SIMD instruction set to quickly process multiple pixels with a single instruction.
There are some issues to be considered:
LibBlinkID.aar archive contains ARMv7 and ARM64 builds of the native library. By default, when you integrate BlinkID into your app, your app will contain native builds for all these processor architectures. Thus, BlinkID will work on ARMv7 and ARM64 devices and will use ARMv7 features on ARMv7 devices and ARM64 features on ARM64 devices. However, the size of your application will be rather large.
We recommend that you distribute your app using App Bundle. This will defer apk generation to Google Play, allowing it to generate minimal APK for each specific device that downloads your app, including only required processor architecture support.
If you are unable to use App Bundle, you can create multiple flavors of your app - one flavor for each architecture. With gradle and Android studio this is very easy - just add the following code to build.gradle file of your app:
android {
...
splits {
abi {
enable true
reset()
include 'armeabi-v7a', 'arm64-v8a'
universalApk true
}
}
}
With that build instructions, gradle will build two different APK files for your app. Each APK will contain only native library for one processor architecture and one APK will contain all architectures. In order for Google Play to accept multiple APKs of the same app, you need to ensure that each APK has different version code. This can easily be done by defining a version code prefix that is dependent on architecture and adding real version code number to it in following gradle script:
// map for the version code
def abiVersionCodes = ['armeabi-v7a':1, 'arm64-v8a':2]
import com.android.build.OutputFile
android.applicationVariants.all { variant ->
// assign different version code for each output
variant.outputs.each { output ->
def filter = output.getFilter(OutputFile.ABI)
if(filter != null) {
output.versionCodeOverride = abiVersionCodes.get(output.getFilter(OutputFile.ABI)) * 1000000 + android.defaultConfig.versionCode
}
}
}
For more information about creating APK splits with gradle, check this article from Google.
After generating multiple APK's, you need to upload them to Google Play. For tutorial and rules about uploading multiple APK's to Google Play, please read the official Google article about multiple APKs.
If you won't be distributing your app via Google Play or for some other reasons want to have single APK of smaller size, you can completely remove support for certain CPU architecture from your APK. This is not recommended due to consequences .
To keep only some CPU architectures, for example armeabi-v7a and arm64-v8a , add the following statement to your android block inside build.gradle :
android {
...
ndk {
// Tells Gradle to package the following ABIs into your application
abiFilters 'armeabi-v7a', 'arm64-v8a'
}
}
This will remove other architecture builds for all native libraries used by the application.
To remove support for a certain CPU architecture only for BlinkID , add the following statement to your android block inside build.gradle :
android {
...
packagingOptions {
exclude 'lib/<ABI>/libBlinkID.so'
}
}
where <ABI> represents the CPU architecture you want to remove:
exclude 'lib/armeabi-v7a/libBlinkID.so'exclude 'lib/arm64-v8a/libBlinkID.so' You can also remove multiple processor architectures by specifying exclude directive multiple times. Just bear in mind that removing processor architecture will have side effects on performance and stability of your app. Please read this for more information.
Google decided that as of August 2019 all apps on Google Play that contain native code need to have native support for 64-bit processors (this includes ARM64 and x86_64). This means that you cannot upload application to Google Play Console that supports only 32-bit ABI and does not support corresponding 64-bit ABI.
By removing ARMv7 support, BlinkID will not work on devices that have ARMv7 processors.
By removing ARM64 support, BlinkID will not use ARM64 features on ARM64 device
If you are combining BlinkID library with other libraries that contain native code into your application, make sure you match the architectures of all native libraries. For example, if third party library has got only ARMv7 version, you must use exactly ARMv7 version of BlinkID with that library, but not ARM64. Using this architectures will crash your app at initialization step because JVM will try to load all its native dependencies in same preferred architecture and will fail with UnsatisfiedLinkError .
libc++_shared.so BlinkID contains native code that depends on the C++ runtime. This runtime is provided by the libc++_shared.so , which needs to be available in your app that is using BlinkID . However, the same file is also used by various other libraries that contain native components. If you happen to integrate both such library together with BlinkID in your app, your build will fail with an error similar to this one:
* What went wrong:
Execution failed for task ':app:mergeDebugNativeLibs'.
> A failure occurred while executing com.android.build.gradle.internal.tasks.MergeJavaResWorkAction
> 2 files found with path 'lib/arm64-v8a/libc++_shared.so' from inputs:
- <path>/.gradle/caches/transforms-3/3d428f9141586beb8805ce57f97bedda/transformed/jetified-opencv-4.5.3.0/jni/arm64-v8a/libc++_shared.so
- <path>/.gradle/caches/transforms-3/609476a082a81bd7af00fd16a991ee43/transformed/jetified-blinkid-6.12.0/jni/arm64-v8a/libc++_shared.so
If you are using jniLibs and CMake IMPORTED targets, see
https://developer.android.com/r/tools/jniLibs-vs-imported-targets
The error states that multiple different dependencies provide the same file lib/arm64/libc++_shared.so (in this case, OpenCV and BlinkID).
You can resolve this issue by making sure that the dependency that uses newer version of libc++_shared.so is listed first in your dependency list, and then, simply add the following to your build.gradle :
android {
packaging {
jniLibs {
pickFirsts.add("lib/armeabi-v7a/libc++_shared.so")
pickFirsts.add("lib/arm64-v8a/libc++_shared.so")
}
}
}
IMPORTANT NOTE
The code above will always select the first libc++_shared.so from your dependency list, so make sure that the dependency that uses the latest version of libc++_shared.so is listed first. This is because libc++_shared.so is backward-compatible, but not forward-compatible. This means that, eg libBlinkID.so built against libc++_shared.so from NDK r24 will work without problems when you package it together with libc++_shared.so from NDK r26, but will crash when you package it together with libc++_shared.so from NDK r21. This is true for all your native dependencies.
In case of problems with SDK integration, first make sure that you have followed integration instructions. If you're still having problems, please contact us at help.microblink.com.
If you are getting "invalid license key" error or having other license-related problems (eg some feature is not enabled that should be or there is a watermark on top of camera), first check the ADB logcat. All license-related problems are logged to error log so it is easy to determine what went wrong.
When you have to determine what is the license-relate problem or you simply do not understand the log, you should contact us help.microblink.com. When contacting us, please make sure you provide following information:
AndroidManifest.xml and/or your build.gradle file)Keep in mind: Versions 5.8.0 and above require an internet connection to work under our new License Management Program.
We're only asking you to do this so we can validate your trial license key. Data extraction still happens offline, on the device itself. Once the validation is complete, you can continue using the SDK in offline mode (or over a private network) until the next check.
If you are having problems with scanning certain items, undesired behaviour on specific device(s), crashes inside BlinkID or anything unmentioned, please do as follows:
enable logging to get the ability to see what is library doing. To enable logging, put this line in your application:
com . microblink . blinkid . util . Log . setLogLevel ( com . microblink . blinkid . util . Log . LogLevel . LOG_VERBOSE );After this line, library will display as much information about its work as possible. Please save the entire log of scanning session to a file that you will send to us. It is important to send the entire log, not just the part where crash occurred, because crashes are sometimes caused by unexpected behaviour in the early stage of the library initialization.
Contact us at help.microblink.com describing your problem and provide following information:
InvalidLicenseKeyException when I construct specific Recognizer object Each license key contains information about which features are allowed to use and which are not. This exception indicates that your production license does not allow using of specific Recognizer object. You should contact support to check if provided license is OK and that it really contains all features that you have purchased.
InvalidLicenseKeyException with trial license key Whenever you construct any Recognizer object or any other object that derives from Entity , a check whether license allows using that object will be performed. If license is not set prior constructing that object, you will get InvalidLicenseKeyException . We recommend setting license as early as possible in your app, ideally in onCreate callback of your Application singleton.
ClassNotFoundExceptionThis usually happens when you perform integration into Eclipse project and you forget to add resources or native libraries into the project. You must alway take care that same versions of both resources, assets, java library and native libraries are used in combination. Combining different versions of resources, assets, java and native libraries will trigger crash in SDK. This problem can also occur when you have performed improper integration of BlinkID SDK into your SDK. Please read how to embed BlinkID inside another SDK.
UnsatisfiedLinkError This error happens when JVM fails to load some native method from native library If performing integration into Android studio and this error happens, make sure that you have correctly combined BlinkID SDK with third party SDKs that contain native code, especially if you need resolving conflict over libc++_shared.so . If this error also happens in our integration sample apps, then it may indicate a bug in the SDK that is manifested on specific device. Please report that to our support team.
libc++_shared.so Please consult the section about resolving libc++_shared.so conflict.
MetadataCallbacks object, but it is not being called Make sure that after adding your callback to MetadataCallbacks you have applied changes to RecognizerRunnerView or RecognizerRunner as described in this section.
MetadataCallbacks object, and now app is crashing with NullPointerException Make sure that after removing your callback from MetadataCallbacks you have applied changes to RecognizerRunnerView or RecognizerRunner as described in this section.
onScanningDone callback I have the result inside my Recognizer , but when scanning activity finishes, the result is gone This usually happens when using RecognizerRunnerView and forgetting to pause the RecognizerRunnerView in your onScanningDone callback. Then, as soon as onScanningDone happens, the result is mutated or reset by additional processing that Recognizer performs in the time between end of your onScanningDone callback and actual finishing of the scanning activity. For more information about statefulness of the Recognizer objects, check this section.
IllegalStateException stating Data cannot be saved to intent because its size exceeds intent limit . This usually happens when you use Recognizer that produces image or similar large object inside its Result and that object exceeds the Android intent transaction limit. You should enable different intent data transfer mode. For more information about this, check this section. Also, instead of using built-in activity, you can use RecognizerRunnerFragment with built-in scanning overlay.
This usually happens when you attempt to transfer standalone Result that contains images or similar large objects via Intent and the size of the object exceeds Android intent transaction limit. Depending on the device, you will get either TransactionTooLargeException, a simple message BINDER TRANSACTION FAILED in log and your app will freeze or your app will get into restart loop. We recommend that you use RecognizerBundle and its API for sending Recognizer objects via Intent in a more safe manner (check this section for more information). However, if you really need to transfer standalone Result object (eg Result object obtained by cloning Result object owned by specific Recognizer object), you need to do that using global variables or singletons within your application. Sending large objects via Intent is not supported by Android.
Direct API When automatic scanning of camera frames with our camera management is used (provided camera overlays or direct usage of RecognizerRunnerView ), we use a stream of video frames and send multiple images to the recognition to boost reading accuracy. Also, we perform frame quality analysis and combine scanning results from multiple camera frames. On the other hand, when you are using the Direct API with a single image per document side, we cannot combine multiple images. We do our best to extract as much information as possible from that image. In some cases, when the quality of the input image is not good enough, for example, when the image is blurred or when glare is present, we are not able to successfully read the document.
Online trial licenses require a public network access for validation purposes. See Licensing issues.
onOcrResult() method in my OcrCallback is never invoked and all Result objects always return null in their OCR result gettersIn order to be able to obtain raw OCR result, which contains locations of each character, its value and its alternatives, you need to have a license that allows that. By default, licenses do not allow exposing raw OCR results in public API. If you really need that, please contact us and explain your use case.
You can find BlinkID SDK size report for all supported ABIs here.
Complete API reference can be found in Javadoc.
For any other questions, feel free to contact us at help.microblink.com.