beyond_vector_search
1.0.0

Usamos o Python == 3.9.18 e recomendamos o uso de um ambiente virtual para instalar os pacotes necessários.
pip install -r requirements.txt
notebooks/parsing_json.ipynb : Dados de filtro para arxivnotebooks/parsing_cnn_news.ipynb : Dados de filtro para notícias da CNNnotebooks/parsing_wiki_movies.ipynb : Filtrar dados para filmes wikiUtilizamos um subconjunto do conjunto de dados ARXIV da Kaggle, que contém 12.926 amostras, e o arquivo de picles é fornecido em "Beiond_Vector_Search/Data/Filled_Data.pickle".
make_vectordb.py: a script to build a vector database from a "data/filtered_data.pickle"
utils/
- build_graph.py: a script containing helper functions for building the knowledge graph
- parse_arxiv.py: a script containing helper functions for parsing the arxiv dataset
vector_graph/
- bipartite_graph_dict.py: A custom implementation of the bipartite graph
- bipartite_graph_networkx.py: An experimental implementation of the bipartite graph using networkx
- embedding_models.py: A custom implementation of the embedding models for generating the text embeddings
workloads
- keyword_extractor.py
- query_gen.py: A script for generating the text queries given paper data points
- workload_gen.sh: This is the script for generating the workloads we described in the report
testing
- inference.py: A script for executing our various search query engines on the generated workloads
zy_testing
- compute_metrics_cos.py: A script for computing the accuracy of our results utilizing various performance compute_metrics_cos