labml
1.0.0

MongoDB 설치하려면 여기에서 공식 문서를 참조하십시오.
PIP를 사용하여 패키지를 설치하십시오.
pip install labml-app # Start the server on the default port (5005)
labml app-server
# To start the server on a different port, use the following command
labml app-server --port PORT선택 사항 : 서버에서 nginx를 설정하고 구성하려면이를 참조하십시오.
http://localhost:{port} 방문하거나 별도의 컴퓨터에서 구성된 경우 http://{server-ip}:{port} 탐색하여 사용자 인터페이스에 액세스 할 수 있습니다.
pip install labml.labml.yaml 이라는 파일을 만들고 파일에 다음 줄을 추가하십시오. app_url : http://localhost:{port}/api/v1/default
# If you are setting up the project on a different machine, include the following line instead,
app_url : http://{server-ip}:{port}/api/v1/default from labml import tracker , experiment
with experiment . record ( name = 'sample' , exp_conf = conf ):
for i in range ( 50 ):
loss , accuracy = train ()
tracker . save ( i , { 'loss' : loss , 'accuracy' : accuracy }) from labml import tracker , experiment
uuid = experiment . generate_uuid () # make sure to sync this in every machine
experiment . create ( uuid = uuid ,
name = 'distributed training sample' ,
distributed_rank = 0 ,
distributed_world_size = 8 ,
)
with experiment . start ():
for i in range ( 50 ):
loss , accuracy = train ()
tracker . save ( i , { 'loss' : loss , 'accuracy' : accuracy }) # Install packages and dependencies
pip install labml psutil py3nvml
# Start monitoring
labml monitorAcademic Research에 Labml을 사용하는 경우 다음 Bibtex 항목을 사용하여 도서관을 인용하십시오.
@misc{labml,
author = {Varuna Jayasiri, Nipun Wijerathne, Adithya Narasinghe, Lakshith Nishshanke},
title = {labml.ai: A library to organize machine learning experiments},
year = {2020},
url = {https://labml.ai/},
}