Han-wu-shuang(ブルース)bao包寒吴霜
? Psychbruce.github.io
library(FMAT)の場合は情報を参照してください。FMATを使用するには、RパッケージFMATと3つのPythonパッケージ( transformers 、 torch 、 huggingface-hub )をすべてインストールする必要があります。
# # Method 1: Install from CRAN
install.packages( " FMAT " )
# # Method 2: Install from GitHub
install.packages( " devtools " )
devtools :: install_github( " psychbruce/FMAT " , force = TRUE )Anaconda(Python、SpyderなどのPython Ides、および必要なPythonパッケージ依存関係の大きなリストを自動的にインストールする推奨パッケージマネージャー)をインストールします。
rstudioでアナコンダのPython通訳を指定します。
rstudio→ツール→グローバル/プロジェクトオプション
→Python→Select→ Conda環境
→ 「.../anaconda3/python.exe」を選択します
Pythonパッケージの特定のバージョン「トランス」、「トーチ」、および「ハグFace-Hub」をインストールします。
(rstudioターミナル /アナコンダプロンプト / Windowsコマンド)
CPUユーザーの場合:
pip install transformers==4.40.2 torch==2.2.1 huggingface-hub==0.20.3
GPU(CUDA)ユーザーの場合:
pip install transformers==4.40.2 huggingface-hub==0.20.3
pip install torch==2.2.1 --index-url https://download.pytorch.org/whl/cu121
HTTPSConnectionPool(host='huggingface.co', port=443)が表示されている場合は、(1)不明な問題を修正するか、(2)バージョンまでの「urllib3」パッケージをバージョン以下pip install urllib3==1.25.11に格下げするようにしてください。バージョン)ハグに接続します。BERT_download()を使用して[bertモデル]をダウンロードします。モデルファイルは、ローカルフォルダー "%userprofile%/。キャッシュ/ハグFace"」に保存されます。 Bertモデルの完全なリストは、Faceの抱きしめで利用できます。
BERT_info()およびBERT_vocab()を使用して、bertモデルの詳細情報を見つけます。
測定する構造を概念的に表すデザインクエリ(BAO、2024、 JPSPを参照してください。
FMAT_query()および/or FMAT_query_bind()を使用して、 data.table of queriesを準備します。
FMAT_run()を使用して、さらなる分析のために生データ(確率推定値)を取得します。
前処理のいくつかのステップが機能に含まれており、簡単に使用できます(詳細については、 FMAT_run()参照してください)。
[MASK]ではなく<mask>マスク>を使用するBertバリエーションの場合、ユーザーが常に[MASK]クエリデザインで使用できるように入力クエリが自動的に変更されます。[MASK]の単語全体(サブワードではなく)全体に一致するように、 u0120やu2581などの特別な接頭文字が自動的に追加されます。デフォルトでは、 FMATパッケージはCPUを使用して、すべてのユーザーの機能を有効にします。しかし、GPUでパイプラインを加速したい上級ユーザーの場合、 FMAT_run()関数は、CPUよりも約3倍高速なGPUデバイスの使用をサポートするようになりました。
テスト結果(開発者のコンピューターでは、BERTモデルのサイズに応じて):
チェックリスト:
torchパッケージ)をインストールします。torchのバージョンをインストールした場合は、最初にアンインストール(コマンド: pip uninstall torch )を取り付けてから、提案されたものをインストールしてください。torchバージョンの場合、同じバージョンのCUDA Toolkit 12.1もインストールできます)。 PytorchをCUDAサポートでインストールするための例:
(rstudioターミナル /アナコンダプロンプト / Windowsコマンド)
pip install torch==2.2.1 --index-url https://download.pytorch.org/whl/cu121
次の12の代表的なBERTモデルの信頼性と妥当性が私の研究記事で確立されていますが、他のモデルのパフォーマンスを調べるには将来の作業が必要です。
(ハグのモデル名 - ダウンロードされたモデルファイルサイズ)
BERTが初めての場合、これらの参照は役立ちます。
library( FMAT )
models = c(
" bert-base-uncased " ,
" bert-base-cased " ,
" bert-large-uncased " ,
" bert-large-cased " ,
" distilbert-base-uncased " ,
" distilbert-base-cased " ,
" albert-base-v1 " ,
" albert-base-v2 " ,
" roberta-base " ,
" distilroberta-base " ,
" vinai/bertweet-base " ,
" vinai/bertweet-large "
)
BERT_download( models ) ℹ Device Info:
R Packages:
FMAT 2024.5
reticulate 1.36.1
Python Packages:
transformers 4.40.2
torch 2.2.1+cu121
NVIDIA GPU CUDA Support:
CUDA Enabled: TRUE
CUDA Version: 12.1
GPU (Device): NVIDIA GeForce RTX 2050
── Downloading model "bert-base-uncased" ──────────────────────────────────────────
→ (1) Downloading configuration...
config.json: 100%|██████████| 570/570 [00:00<00:00, 114kB/s]
→ (2) Downloading tokenizer...
tokenizer_config.json: 100%|██████████| 48.0/48.0 [00:00<00:00, 23.9kB/s]
vocab.txt: 100%|██████████| 232k/232k [00:00<00:00, 1.50MB/s]
tokenizer.json: 100%|██████████| 466k/466k [00:00<00:00, 1.98MB/s]
→ (3) Downloading model...
model.safetensors: 100%|██████████| 440M/440M [00:36<00:00, 12.1MB/s]
✔ Successfully downloaded model "bert-base-uncased"
── Downloading model "bert-base-cased" ────────────────────────────────────────────
→ (1) Downloading configuration...
config.json: 100%|██████████| 570/570 [00:00<00:00, 63.3kB/s]
→ (2) Downloading tokenizer...
tokenizer_config.json: 100%|██████████| 49.0/49.0 [00:00<00:00, 8.66kB/s]
vocab.txt: 100%|██████████| 213k/213k [00:00<00:00, 1.39MB/s]
tokenizer.json: 100%|██████████| 436k/436k [00:00<00:00, 10.1MB/s]
→ (3) Downloading model...
model.safetensors: 100%|██████████| 436M/436M [00:37<00:00, 11.6MB/s]
✔ Successfully downloaded model "bert-base-cased"
── Downloading model "bert-large-uncased" ─────────────────────────────────────────
→ (1) Downloading configuration...
config.json: 100%|██████████| 571/571 [00:00<00:00, 268kB/s]
→ (2) Downloading tokenizer...
tokenizer_config.json: 100%|██████████| 48.0/48.0 [00:00<00:00, 12.0kB/s]
vocab.txt: 100%|██████████| 232k/232k [00:00<00:00, 1.50MB/s]
tokenizer.json: 100%|██████████| 466k/466k [00:00<00:00, 1.99MB/s]
→ (3) Downloading model...
model.safetensors: 100%|██████████| 1.34G/1.34G [01:36<00:00, 14.0MB/s]
✔ Successfully downloaded model "bert-large-uncased"
── Downloading model "bert-large-cased" ───────────────────────────────────────────
→ (1) Downloading configuration...
config.json: 100%|██████████| 762/762 [00:00<00:00, 125kB/s]
→ (2) Downloading tokenizer...
tokenizer_config.json: 100%|██████████| 49.0/49.0 [00:00<00:00, 12.3kB/s]
vocab.txt: 100%|██████████| 213k/213k [00:00<00:00, 1.41MB/s]
tokenizer.json: 100%|██████████| 436k/436k [00:00<00:00, 5.39MB/s]
→ (3) Downloading model...
model.safetensors: 100%|██████████| 1.34G/1.34G [01:35<00:00, 14.0MB/s]
✔ Successfully downloaded model "bert-large-cased"
── Downloading model "distilbert-base-uncased" ────────────────────────────────────
→ (1) Downloading configuration...
config.json: 100%|██████████| 483/483 [00:00<00:00, 161kB/s]
→ (2) Downloading tokenizer...
tokenizer_config.json: 100%|██████████| 48.0/48.0 [00:00<00:00, 9.46kB/s]
vocab.txt: 100%|██████████| 232k/232k [00:00<00:00, 16.5MB/s]
tokenizer.json: 100%|██████████| 466k/466k [00:00<00:00, 14.8MB/s]
→ (3) Downloading model...
model.safetensors: 100%|██████████| 268M/268M [00:19<00:00, 13.5MB/s]
✔ Successfully downloaded model "distilbert-base-uncased"
── Downloading model "distilbert-base-cased" ──────────────────────────────────────
→ (1) Downloading configuration...
config.json: 100%|██████████| 465/465 [00:00<00:00, 233kB/s]
→ (2) Downloading tokenizer...
tokenizer_config.json: 100%|██████████| 49.0/49.0 [00:00<00:00, 9.80kB/s]
vocab.txt: 100%|██████████| 213k/213k [00:00<00:00, 1.39MB/s]
tokenizer.json: 100%|██████████| 436k/436k [00:00<00:00, 8.70MB/s]
→ (3) Downloading model...
model.safetensors: 100%|██████████| 263M/263M [00:24<00:00, 10.9MB/s]
✔ Successfully downloaded model "distilbert-base-cased"
── Downloading model "albert-base-v1" ─────────────────────────────────────────────
→ (1) Downloading configuration...
config.json: 100%|██████████| 684/684 [00:00<00:00, 137kB/s]
→ (2) Downloading tokenizer...
tokenizer_config.json: 100%|██████████| 25.0/25.0 [00:00<00:00, 3.57kB/s]
spiece.model: 100%|██████████| 760k/760k [00:00<00:00, 4.93MB/s]
tokenizer.json: 100%|██████████| 1.31M/1.31M [00:00<00:00, 13.4MB/s]
→ (3) Downloading model...
model.safetensors: 100%|██████████| 47.4M/47.4M [00:03<00:00, 13.4MB/s]
✔ Successfully downloaded model "albert-base-v1"
── Downloading model "albert-base-v2" ─────────────────────────────────────────────
→ (1) Downloading configuration...
config.json: 100%|██████████| 684/684 [00:00<00:00, 137kB/s]
→ (2) Downloading tokenizer...
tokenizer_config.json: 100%|██████████| 25.0/25.0 [00:00<00:00, 4.17kB/s]
spiece.model: 100%|██████████| 760k/760k [00:00<00:00, 5.10MB/s]
tokenizer.json: 100%|██████████| 1.31M/1.31M [00:00<00:00, 6.93MB/s]
→ (3) Downloading model...
model.safetensors: 100%|██████████| 47.4M/47.4M [00:03<00:00, 13.8MB/s]
✔ Successfully downloaded model "albert-base-v2"
── Downloading model "roberta-base" ───────────────────────────────────────────────
→ (1) Downloading configuration...
config.json: 100%|██████████| 481/481 [00:00<00:00, 80.3kB/s]
→ (2) Downloading tokenizer...
tokenizer_config.json: 100%|██████████| 25.0/25.0 [00:00<00:00, 6.25kB/s]
vocab.json: 100%|██████████| 899k/899k [00:00<00:00, 2.72MB/s]
merges.txt: 100%|██████████| 456k/456k [00:00<00:00, 8.22MB/s]
tokenizer.json: 100%|██████████| 1.36M/1.36M [00:00<00:00, 8.56MB/s]
→ (3) Downloading model...
model.safetensors: 100%|██████████| 499M/499M [00:38<00:00, 12.9MB/s]
✔ Successfully downloaded model "roberta-base"
── Downloading model "distilroberta-base" ─────────────────────────────────────────
→ (1) Downloading configuration...
config.json: 100%|██████████| 480/480 [00:00<00:00, 96.4kB/s]
→ (2) Downloading tokenizer...
tokenizer_config.json: 100%|██████████| 25.0/25.0 [00:00<00:00, 12.0kB/s]
vocab.json: 100%|██████████| 899k/899k [00:00<00:00, 6.59MB/s]
merges.txt: 100%|██████████| 456k/456k [00:00<00:00, 9.46MB/s]
tokenizer.json: 100%|██████████| 1.36M/1.36M [00:00<00:00, 11.5MB/s]
→ (3) Downloading model...
model.safetensors: 100%|██████████| 331M/331M [00:25<00:00, 13.0MB/s]
✔ Successfully downloaded model "distilroberta-base"
── Downloading model "vinai/bertweet-base" ────────────────────────────────────────
→ (1) Downloading configuration...
config.json: 100%|██████████| 558/558 [00:00<00:00, 187kB/s]
→ (2) Downloading tokenizer...
vocab.txt: 100%|██████████| 843k/843k [00:00<00:00, 7.44MB/s]
bpe.codes: 100%|██████████| 1.08M/1.08M [00:00<00:00, 7.01MB/s]
tokenizer.json: 100%|██████████| 2.91M/2.91M [00:00<00:00, 9.10MB/s]
→ (3) Downloading model...
pytorch_model.bin: 100%|██████████| 543M/543M [00:48<00:00, 11.1MB/s]
✔ Successfully downloaded model "vinai/bertweet-base"
── Downloading model "vinai/bertweet-large" ───────────────────────────────────────
→ (1) Downloading configuration...
config.json: 100%|██████████| 614/614 [00:00<00:00, 120kB/s]
→ (2) Downloading tokenizer...
vocab.json: 100%|██████████| 899k/899k [00:00<00:00, 5.90MB/s]
merges.txt: 100%|██████████| 456k/456k [00:00<00:00, 7.30MB/s]
tokenizer.json: 100%|██████████| 1.36M/1.36M [00:00<00:00, 8.31MB/s]
→ (3) Downloading model...
pytorch_model.bin: 100%|██████████| 1.42G/1.42G [02:29<00:00, 9.53MB/s]
✔ Successfully downloaded model "vinai/bertweet-large"
── Downloaded models: ──
size
albert-base-v1 45 MB
albert-base-v2 45 MB
bert-base-cased 416 MB
bert-base-uncased 420 MB
bert-large-cased 1277 MB
bert-large-uncased 1283 MB
distilbert-base-cased 251 MB
distilbert-base-uncased 256 MB
distilroberta-base 316 MB
roberta-base 476 MB
vinai/bertweet-base 517 MB
vinai/bertweet-large 1356 MB
✔ Downloaded models saved at C:/Users/Bruce/.cache/huggingface/hub (6.52 GB)
BERT_info( models ) model size vocab dims mask
<fctr> <char> <int> <int> <char>
1: bert-base-uncased 420MB 30522 768 [MASK]
2: bert-base-cased 416MB 28996 768 [MASK]
3: bert-large-uncased 1283MB 30522 1024 [MASK]
4: bert-large-cased 1277MB 28996 1024 [MASK]
5: distilbert-base-uncased 256MB 30522 768 [MASK]
6: distilbert-base-cased 251MB 28996 768 [MASK]
7: albert-base-v1 45MB 30000 128 [MASK]
8: albert-base-v2 45MB 30000 128 [MASK]
9: roberta-base 476MB 50265 768 <mask>
10: distilroberta-base 316MB 50265 768 <mask>
11: vinai/bertweet-base 517MB 64001 768 <mask>
12: vinai/bertweet-large 1356MB 50265 1024 <mask>
(開発者のコンピューターで2024-05-16テスト:HP ProBook 450 G10ノートブックPC)
FMATは、心理学と社会の計算インテリジェントな分析のための革新的な方法ですが、他のテキスト分析方法の統合ツールボックスを探すこともできます。私が開発した別のRパッケージ--- PsychwordVec ---は、単語の埋め込み分析(例、Word Embedding Association Test、Weat)に便利でユーザーフレンドリーです。そのドキュメントを参照して、お気軽に使用してください。