Han-wu-shuang (Bruce) bao 包寒吴霜
? psychbruce.github.io
library(FMAT) para el formato APA-7 de la versión que instaló. Para usar el FMAT, el paquete R FMAT y tres paquetes de Python ( transformers , torch , huggingface-hub ) deben instalarse.
# # Method 1: Install from CRAN
install.packages( " FMAT " )
# # Method 2: Install from GitHub
install.packages( " devtools " )
devtools :: install_github( " psychbruce/FMAT " , force = TRUE )Instale Anaconda (un administrador de paquetes recomendado que instala automáticamente Python, IDES de Python como Spyder y una gran lista de dependencias de paquetes de Python necesarias).
Especifique el intérprete Python de Anaconda en Rstudio.
RSTUDIO → Herramientas → Opciones globales/de proyecto
→ Python → Seleccionar → entornos de condena
→ Elija ".../anaconda3/python.exe"
Instale versiones específicas de los paquetes de Python "Transformers", "Torch" y "Huggingface-Hub".
(RSTUDIO Terminal / Anaconda solicit / Windows Command)
Para usuarios de CPU:
pip install transformers==4.40.2 torch==2.2.1 huggingface-hub==0.20.3
Para usuarios de GPU (CUDA):
pip install transformers==4.40.2 huggingface-hub==0.20.3
pip install torch==2.2.1 --index-url https://download.pytorch.org/whl/cu121
HTTPSConnectionPool(host='huggingface.co', port=443) , intente (1) reinstalar Anaconda para que se puedan solucionar algunos problemas desconocidos o (2) deglade el paquete "urllib3" a la versión ≤ 1.25.11 ( pip install urllib3==1.25.11 ) para que use proxies http (en lugar de los proxies http (en lugar de ser https. para conectarse a la cara abrazada. Use BERT_download() para descargar [modelos bert]. Los archivos de modelo se guardan en su carpeta local "%userProfile%/. Cache/Huggingface". Una lista completa de modelos Bert está disponible en Hugging Face.
Use BERT_info() y BERT_vocab() para encontrar información detallada de los modelos Bert.
Consultas de diseño que representan conceptualmente las construcciones que mediría (ver BAO, 2024, JPSP sobre cómo diseñar consultas).
Use FMAT_query() y/o FMAT_query_bind() para preparar una data.table de consultas.
Use FMAT_run() para obtener datos sin procesar (estimaciones de probabilidad) para un análisis posterior.
Se han incluido varios pasos de preprocesamiento en la función para un uso más fácil (ver FMAT_run() para más detalles).
<mask> en lugar de [MASK] como el token de máscara, la consulta de entrada se modificará automáticamente para que los usuarios siempre puedan usar [MASK] en el diseño de la consulta.u0120 y u2581 se agregarán automáticamente para que coincidan con las palabras completas (en lugar de las subvenciones) para [MASK] . De manera predeterminada, el paquete FMAT usa CPU para habilitar la funcionalidad para todos los usuarios. Pero para los usuarios avanzados que desean acelerar la tubería con GPU, la función FMAT_run() ahora es compatible con un dispositivo GPU, aproximadamente 3 veces más rápido que la CPU.
Resultados de la prueba (en la computadora del desarrollador, dependiendo del tamaño del modelo Bert):
Lista de verificación:
torch Python) con soporte CUDA.torch sin soporte CUDA, primero desinstale (comando: pip uninstall torch ) e instale el sugerido.torch que admite CUDA 12.1, también se puede instalar la misma versión de CUDA Toolkit 12.1). Código de ejemplo para instalar Pytorch con soporte CUDA:
(RSTUDIO Terminal / Anaconda solicit / Windows Command)
pip install torch==2.2.1 --index-url https://download.pytorch.org/whl/cu121
La confiabilidad y validez de los siguientes 12 modelos Bert representativos se han establecido en mis artículos de investigación, pero se necesita trabajo futuro para examinar el rendimiento de otros modelos.
(Nombre del modelo en la cara de abrazo - Tamaño del archivo del modelo descargado)
Si es nuevo en Bert, estas referencias pueden ser útiles:
library( FMAT )
models = c(
" bert-base-uncased " ,
" bert-base-cased " ,
" bert-large-uncased " ,
" bert-large-cased " ,
" distilbert-base-uncased " ,
" distilbert-base-cased " ,
" albert-base-v1 " ,
" albert-base-v2 " ,
" roberta-base " ,
" distilroberta-base " ,
" vinai/bertweet-base " ,
" vinai/bertweet-large "
)
BERT_download( models ) ℹ Device Info:
R Packages:
FMAT 2024.5
reticulate 1.36.1
Python Packages:
transformers 4.40.2
torch 2.2.1+cu121
NVIDIA GPU CUDA Support:
CUDA Enabled: TRUE
CUDA Version: 12.1
GPU (Device): NVIDIA GeForce RTX 2050
── Downloading model "bert-base-uncased" ──────────────────────────────────────────
→ (1) Downloading configuration...
config.json: 100%|██████████| 570/570 [00:00<00:00, 114kB/s]
→ (2) Downloading tokenizer...
tokenizer_config.json: 100%|██████████| 48.0/48.0 [00:00<00:00, 23.9kB/s]
vocab.txt: 100%|██████████| 232k/232k [00:00<00:00, 1.50MB/s]
tokenizer.json: 100%|██████████| 466k/466k [00:00<00:00, 1.98MB/s]
→ (3) Downloading model...
model.safetensors: 100%|██████████| 440M/440M [00:36<00:00, 12.1MB/s]
✔ Successfully downloaded model "bert-base-uncased"
── Downloading model "bert-base-cased" ────────────────────────────────────────────
→ (1) Downloading configuration...
config.json: 100%|██████████| 570/570 [00:00<00:00, 63.3kB/s]
→ (2) Downloading tokenizer...
tokenizer_config.json: 100%|██████████| 49.0/49.0 [00:00<00:00, 8.66kB/s]
vocab.txt: 100%|██████████| 213k/213k [00:00<00:00, 1.39MB/s]
tokenizer.json: 100%|██████████| 436k/436k [00:00<00:00, 10.1MB/s]
→ (3) Downloading model...
model.safetensors: 100%|██████████| 436M/436M [00:37<00:00, 11.6MB/s]
✔ Successfully downloaded model "bert-base-cased"
── Downloading model "bert-large-uncased" ─────────────────────────────────────────
→ (1) Downloading configuration...
config.json: 100%|██████████| 571/571 [00:00<00:00, 268kB/s]
→ (2) Downloading tokenizer...
tokenizer_config.json: 100%|██████████| 48.0/48.0 [00:00<00:00, 12.0kB/s]
vocab.txt: 100%|██████████| 232k/232k [00:00<00:00, 1.50MB/s]
tokenizer.json: 100%|██████████| 466k/466k [00:00<00:00, 1.99MB/s]
→ (3) Downloading model...
model.safetensors: 100%|██████████| 1.34G/1.34G [01:36<00:00, 14.0MB/s]
✔ Successfully downloaded model "bert-large-uncased"
── Downloading model "bert-large-cased" ───────────────────────────────────────────
→ (1) Downloading configuration...
config.json: 100%|██████████| 762/762 [00:00<00:00, 125kB/s]
→ (2) Downloading tokenizer...
tokenizer_config.json: 100%|██████████| 49.0/49.0 [00:00<00:00, 12.3kB/s]
vocab.txt: 100%|██████████| 213k/213k [00:00<00:00, 1.41MB/s]
tokenizer.json: 100%|██████████| 436k/436k [00:00<00:00, 5.39MB/s]
→ (3) Downloading model...
model.safetensors: 100%|██████████| 1.34G/1.34G [01:35<00:00, 14.0MB/s]
✔ Successfully downloaded model "bert-large-cased"
── Downloading model "distilbert-base-uncased" ────────────────────────────────────
→ (1) Downloading configuration...
config.json: 100%|██████████| 483/483 [00:00<00:00, 161kB/s]
→ (2) Downloading tokenizer...
tokenizer_config.json: 100%|██████████| 48.0/48.0 [00:00<00:00, 9.46kB/s]
vocab.txt: 100%|██████████| 232k/232k [00:00<00:00, 16.5MB/s]
tokenizer.json: 100%|██████████| 466k/466k [00:00<00:00, 14.8MB/s]
→ (3) Downloading model...
model.safetensors: 100%|██████████| 268M/268M [00:19<00:00, 13.5MB/s]
✔ Successfully downloaded model "distilbert-base-uncased"
── Downloading model "distilbert-base-cased" ──────────────────────────────────────
→ (1) Downloading configuration...
config.json: 100%|██████████| 465/465 [00:00<00:00, 233kB/s]
→ (2) Downloading tokenizer...
tokenizer_config.json: 100%|██████████| 49.0/49.0 [00:00<00:00, 9.80kB/s]
vocab.txt: 100%|██████████| 213k/213k [00:00<00:00, 1.39MB/s]
tokenizer.json: 100%|██████████| 436k/436k [00:00<00:00, 8.70MB/s]
→ (3) Downloading model...
model.safetensors: 100%|██████████| 263M/263M [00:24<00:00, 10.9MB/s]
✔ Successfully downloaded model "distilbert-base-cased"
── Downloading model "albert-base-v1" ─────────────────────────────────────────────
→ (1) Downloading configuration...
config.json: 100%|██████████| 684/684 [00:00<00:00, 137kB/s]
→ (2) Downloading tokenizer...
tokenizer_config.json: 100%|██████████| 25.0/25.0 [00:00<00:00, 3.57kB/s]
spiece.model: 100%|██████████| 760k/760k [00:00<00:00, 4.93MB/s]
tokenizer.json: 100%|██████████| 1.31M/1.31M [00:00<00:00, 13.4MB/s]
→ (3) Downloading model...
model.safetensors: 100%|██████████| 47.4M/47.4M [00:03<00:00, 13.4MB/s]
✔ Successfully downloaded model "albert-base-v1"
── Downloading model "albert-base-v2" ─────────────────────────────────────────────
→ (1) Downloading configuration...
config.json: 100%|██████████| 684/684 [00:00<00:00, 137kB/s]
→ (2) Downloading tokenizer...
tokenizer_config.json: 100%|██████████| 25.0/25.0 [00:00<00:00, 4.17kB/s]
spiece.model: 100%|██████████| 760k/760k [00:00<00:00, 5.10MB/s]
tokenizer.json: 100%|██████████| 1.31M/1.31M [00:00<00:00, 6.93MB/s]
→ (3) Downloading model...
model.safetensors: 100%|██████████| 47.4M/47.4M [00:03<00:00, 13.8MB/s]
✔ Successfully downloaded model "albert-base-v2"
── Downloading model "roberta-base" ───────────────────────────────────────────────
→ (1) Downloading configuration...
config.json: 100%|██████████| 481/481 [00:00<00:00, 80.3kB/s]
→ (2) Downloading tokenizer...
tokenizer_config.json: 100%|██████████| 25.0/25.0 [00:00<00:00, 6.25kB/s]
vocab.json: 100%|██████████| 899k/899k [00:00<00:00, 2.72MB/s]
merges.txt: 100%|██████████| 456k/456k [00:00<00:00, 8.22MB/s]
tokenizer.json: 100%|██████████| 1.36M/1.36M [00:00<00:00, 8.56MB/s]
→ (3) Downloading model...
model.safetensors: 100%|██████████| 499M/499M [00:38<00:00, 12.9MB/s]
✔ Successfully downloaded model "roberta-base"
── Downloading model "distilroberta-base" ─────────────────────────────────────────
→ (1) Downloading configuration...
config.json: 100%|██████████| 480/480 [00:00<00:00, 96.4kB/s]
→ (2) Downloading tokenizer...
tokenizer_config.json: 100%|██████████| 25.0/25.0 [00:00<00:00, 12.0kB/s]
vocab.json: 100%|██████████| 899k/899k [00:00<00:00, 6.59MB/s]
merges.txt: 100%|██████████| 456k/456k [00:00<00:00, 9.46MB/s]
tokenizer.json: 100%|██████████| 1.36M/1.36M [00:00<00:00, 11.5MB/s]
→ (3) Downloading model...
model.safetensors: 100%|██████████| 331M/331M [00:25<00:00, 13.0MB/s]
✔ Successfully downloaded model "distilroberta-base"
── Downloading model "vinai/bertweet-base" ────────────────────────────────────────
→ (1) Downloading configuration...
config.json: 100%|██████████| 558/558 [00:00<00:00, 187kB/s]
→ (2) Downloading tokenizer...
vocab.txt: 100%|██████████| 843k/843k [00:00<00:00, 7.44MB/s]
bpe.codes: 100%|██████████| 1.08M/1.08M [00:00<00:00, 7.01MB/s]
tokenizer.json: 100%|██████████| 2.91M/2.91M [00:00<00:00, 9.10MB/s]
→ (3) Downloading model...
pytorch_model.bin: 100%|██████████| 543M/543M [00:48<00:00, 11.1MB/s]
✔ Successfully downloaded model "vinai/bertweet-base"
── Downloading model "vinai/bertweet-large" ───────────────────────────────────────
→ (1) Downloading configuration...
config.json: 100%|██████████| 614/614 [00:00<00:00, 120kB/s]
→ (2) Downloading tokenizer...
vocab.json: 100%|██████████| 899k/899k [00:00<00:00, 5.90MB/s]
merges.txt: 100%|██████████| 456k/456k [00:00<00:00, 7.30MB/s]
tokenizer.json: 100%|██████████| 1.36M/1.36M [00:00<00:00, 8.31MB/s]
→ (3) Downloading model...
pytorch_model.bin: 100%|██████████| 1.42G/1.42G [02:29<00:00, 9.53MB/s]
✔ Successfully downloaded model "vinai/bertweet-large"
── Downloaded models: ──
size
albert-base-v1 45 MB
albert-base-v2 45 MB
bert-base-cased 416 MB
bert-base-uncased 420 MB
bert-large-cased 1277 MB
bert-large-uncased 1283 MB
distilbert-base-cased 251 MB
distilbert-base-uncased 256 MB
distilroberta-base 316 MB
roberta-base 476 MB
vinai/bertweet-base 517 MB
vinai/bertweet-large 1356 MB
✔ Downloaded models saved at C:/Users/Bruce/.cache/huggingface/hub (6.52 GB)
BERT_info( models ) model size vocab dims mask
<fctr> <char> <int> <int> <char>
1: bert-base-uncased 420MB 30522 768 [MASK]
2: bert-base-cased 416MB 28996 768 [MASK]
3: bert-large-uncased 1283MB 30522 1024 [MASK]
4: bert-large-cased 1277MB 28996 1024 [MASK]
5: distilbert-base-uncased 256MB 30522 768 [MASK]
6: distilbert-base-cased 251MB 28996 768 [MASK]
7: albert-base-v1 45MB 30000 128 [MASK]
8: albert-base-v2 45MB 30000 128 [MASK]
9: roberta-base 476MB 50265 768 <mask>
10: distilroberta-base 316MB 50265 768 <mask>
11: vinai/bertweet-base 517MB 64001 768 <mask>
12: vinai/bertweet-large 1356MB 50265 1024 <mask>
(Probado 2024-05-16 en la computadora del desarrollador: HP Probook 450 G10 PC de cuaderno)
Si bien el FMAT es un método innovador para el análisis inteligente computacional de la psicología y la sociedad, también puede buscar una caja de herramientas integrador para otros métodos analíticos de texto. Otro paquete R que desarrollé --- PsychWordVec --- es útil y fácil de usar para el análisis de incrustación de palabras (por ejemplo, la prueba de asociación de incrustaciones de palabras, Weat). Consulte su documentación y no dude en usarla.