SAPPHIRE
1.0.0
Sapphireのコード:INLG 2021(Best Long Paper)で公開されている強化されたコンセプトからテキストへの生成のアプローチ。次のように引用できます。
@inproceedings{feng-etal-2021-sapphire,
title = "{SAPPHIRE}: Approaches for Enhanced Concept-to-Text Generation",
author = "Feng, Steven Y. and
Huynh, Jessica and
Narisetty, Chaitanya Prasad and
Hovy, Eduard and
Gangal, Varun",
booktitle = "Proceedings of the 14th International Conference on Natural Language Generation",
month = aug,
year = "2021",
address = "Aberdeen, Scotland, UK",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.inlg-1.21",
pages = "212--225",
abstract = "We motivate and propose a suite of simple but effective improvements for concept-to-text generation called SAPPHIRE: Set Augmentation and Post-hoc PHrase Infilling and REcombination. We demonstrate their effectiveness on generative commonsense reasoning, a.k.a. the CommonGen task, through experiments using both BART and T5 models. Through extensive automatic and human evaluation, we show that SAPPHIRE noticeably improves model performance. An in-depth qualitative analysis illustrates that SAPPHIRE effectively addresses many issues of the baseline model generations, including lack of commonsense, insufficient specificity, and poor fluency.",
}
著者:スティーブン・Y・フェン、ジェシカ・フイン、チャイタンヤ・プラサド・ナリセッティ、エドゥアルド・ホビー、ヴァルン・ガンガル
ポスターやその他のリソースはここにあります。
注:お問い合わせは、 [email protected]に送信するか、ここで問題を開始する必要があります。