galah
v1.0.0

tl; dr:galah(/ oəˈliː/ - 「guh-laa」と発音される)は、さまざまなアプリケーションを模倣し、任意のHTTPリクエストに動的に応答するように設計されたLLM駆動のWebハニーポットです。 Galahは、Openai、Googleai、GCPの頂点AI、人類、炭、オラマなどの主要なLLMプロバイダーをサポートしています。
特定のWebアプリケーションや脆弱性を手動でエミュレートする従来のWebハニーポットとは異なり、GalahはHTTPリクエストに対して関連する応答(HTTPヘッダーとボディコンテンツを含む)を動的に作成します。 LLMによって生成された応答は、同一の要求の繰り返し生成を防ぐために構成可能な期間にわたってキャッシュされ、APIコストが削減されます。キャッシュはポート固有であり、特定のポートに対して生成された応答が別のポートで同じリクエストに対して再利用されないようにします。
このハニーポットのプロンプト構成は重要です。構成ファイルでプロンプトを更新できますが、LLMに指示するセグメントが指定されたJSON形式で応答を生成するように維持することが重要です。
注: Galahは、HTTPメッセージの作成におけるLLMの機能を調査するための楽しい週末プロジェクトとして開発されましたが、生産の使用を目的としていません。ハニーポットは、ネットワークフィンガープリント手法、LLMプロバイダーとモデルに応じて長期にわたる応答時間、非標準応答など、さまざまな方法で識別できる場合があります。ウォレット攻撃の拒否から保護するには、 LLM APIの使用制限を必ず設定してください。
config.yamlファイルを更新します。% git clone [email protected]:0x4D31/galah.git
% cd galah
% go mod download
% go build -o galah ./cmd/galah
% export LLM_API_KEY=your-api-key
% ./galah --help
██████ █████ ██ █████ ██ ██
██ ██ ██ ██ ██ ██ ██ ██
██ ███ ███████ ██ ███████ ███████
██ ██ ██ ██ ██ ██ ██ ██ ██
██████ ██ ██ ███████ ██ ██ ██ ██
llm-based web honeypot // version 1.0
author: Adel " 0x4D31 " Karimi
Usage: galah --provider PROVIDER --model MODEL [--server-url SERVER-URL] [--temperature TEMPERATURE] [--api-key API-KEY] [--cloud-location CLOUD-LOCATION] [--cloud-project CLOUD-PROJECT] [--interface INTERFACE] [--config-file CONFIG-FILE] [--event-log-file EVENT-LOG-FILE] [--cache-db-file CACHE-DB-FILE] [--cache-duration CACHE-DURATION] [--log-level LOG-LEVEL]
Options:
--provider PROVIDER, -p PROVIDER
LLM provider (openai, googleai, gcp-vertex, anthropic, cohere, ollama) [env: LLM_PROVIDER]
--model MODEL, -m MODEL
LLM model (e.g. gpt-3.5-turbo-1106, gemini-1.5-pro-preview-0409) [env: LLM_MODEL]
--server-url SERVER-URL, -u SERVER-URL
LLM Server URL (required for Ollama) [env: LLM_SERVER_URL]
--temperature TEMPERATURE, -t TEMPERATURE
LLM sampling temperature (0-2). Higher values make the output more random [default: 1, env: LLM_TEMPERATURE]
--api-key API-KEY, -k API-KEY
LLM API Key [env: LLM_API_KEY]
--cloud-location CLOUD-LOCATION
LLM cloud location region (required for GCP ' s Vertex AI) [env: LLM_CLOUD_LOCATION]
--cloud-project CLOUD-PROJECT
LLM cloud project ID (required for GCP ' s Vertex AI) [env: LLM_CLOUD_PROJECT]
--interface INTERFACE, -i INTERFACE
interface to serve on
--config-file CONFIG-FILE, -c CONFIG-FILE
Path to config file [default: config/config.yaml]
--event-log-file EVENT-LOG-FILE, -o EVENT-LOG-FILE
Path to event log file [default: event_log.json]
--cache-db-file CACHE-DB-FILE, -f CACHE-DB-FILE
Path to database file for response caching [default: cache.db]
--cache-duration CACHE-DURATION, -d CACHE-DURATION
Cache duration for generated responses (in hours). Use 0 to disable caching, and -1 for unlimited caching (no expiration). [default: 24]
--log-level LOG-LEVEL, -l LOG-LEVEL
Log level (debug, info, error, fatal) [default: info]
--help, -h display this help and exit% git clone [email protected]:0x4D31/galah.git
% cd galah
% mkdir logs
% export LLM_API_KEY=your-api-key
% docker build -t galah-image .
% docker run -d --name galah-container -p 8080:8080 -v $( pwd ) /logs:/galah/logs -e LLM_API_KEY galah-image -o logs/galah.json -p openai -m gpt-3.5-turbo-1106./galah -p gcp-vertex -m gemini-1.0-pro-002 --cloud-project galah-test --cloud-location us-central1 --temperature 0.2 --cache-duration 0 % curl -i http://localhost:8080/.aws/credentials
HTTP/1.1 200 OK
Date: Sun, 26 May 2024 16:37:26 GMT
Content-Length: 116
Content-Type: text/plain; charset=utf-8
[default]
aws_access_key_id = AKIAIOSFODNN7EXAMPLE
aws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
JSONイベントログ:
{
"eventTime": "2024-05-26T18:37:26.742418+02:00",
"httpRequest": {
"body": "",
"bodySha256": "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855",
"headers": "User-Agent: [curl/7.71.1], Accept: [*/*]",
"headersSorted": "Accept,User-Agent",
"headersSortedSha256": "cf69e186169279bd51769f29d122b07f1f9b7e51bf119c340b66fbd2a1128bc9",
"method": "GET",
"protocolVersion": "HTTP/1.1",
"request": "/.aws/credentials",
"userAgent": "curl/7.71.1"
},
"httpResponse": {
"headers": {
"Content-Length": "127",
"Content-Type": "text/plain"
},
"body": "[default]naws_access_key_id = AKIAIOSFODNN7EXAMPLEnaws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEYn"
},
"level": "info",
"llm": {
"model": "gemini-1.0-pro-002",
"provider": "gcp-vertex",
"temperature": 0.2
},
"msg": "successfulResponse",
"port": "8080",
"sensorName": "mbp.local",
"srcHost": "localhost",
"srcIP": "::1",
"srcPort": "51725",
"tags": null,
"time": "2024-05-26T18:37:26.742447+02:00"
}
こちらの例を参照してください。