
Tl; dr: galah (/ ɡəˈlː/-ausgesprochen 'Guh-laa') ist ein LLM-gestützter Web-Honeypot, der verschiedene Anwendungen nachahmt und dynamisch auf willkürliche HTTP-Anfragen reagiert. Galah unterstützt große LLM -Anbieter, darunter OpenAI, Googleai, GCPs Vertex AI, Anthropic, Cohere und Ollama.
Im Gegensatz zu herkömmlichen Web -Honeypots, die bestimmte Webanwendungen oder Schwachstellen manuell nachahmt, stellt Galah relevante Antworten - einschließlich HTTP -Header und Körperinhalt - dynamisch auf jede HTTP -Anfrage her. Die von der LLM generierten Antworten werden für einen konfigurierbaren Zeitraum zwischengespeichert, um sich wiederholte Erzeugung für identische Anforderungen zu verhindern und die API -Kosten zu senken. Das Caching ist portspezifisch und sorgt dafür, dass die für einen bestimmten Port generierten Antworten nicht für dieselbe Anfrage für einen anderen Port wiederverwendet werden.
Die Eingabeaufforderungskonfiguration ist der Schlüssel in diesem Honeypot. Während Sie die Eingabeaufforderung in der Konfigurationsdatei aktualisieren können, ist es entscheidend, das Segment beizubehalten, das die LLM leitet, um Antworten im angegebenen JSON -Format zu erzeugen.
HINWEIS: Galah wurde als ein lustiges Wochenendprojekt entwickelt, um die Funktionen von LLMs bei der Herstellung von HTTP -Nachrichten zu untersuchen, und ist nicht für die Produktionsanwendung bestimmt. Der Honeypot kann durch verschiedene Methoden wie Netzwerk-Fingerabdrucktechniken, längere Reaktionszeiten identifiziert werden, abhängig vom LLM-Anbieter und des Modells und nicht standardmäßigen Antworten. Um vor Verweigerung von Brieftaschenangriffen zu schützen, sollten Sie Ihre LLM -API Nutzungsgrenzen setzen .
config.yaml .% git clone [email protected]:0x4D31/galah.git
% cd galah
% go mod download
% go build -o galah ./cmd/galah
% export LLM_API_KEY=your-api-key
% ./galah --help
██████ █████ ██ █████ ██ ██
██ ██ ██ ██ ██ ██ ██ ██
██ ███ ███████ ██ ███████ ███████
██ ██ ██ ██ ██ ██ ██ ██ ██
██████ ██ ██ ███████ ██ ██ ██ ██
llm-based web honeypot // version 1.0
author: Adel " 0x4D31 " Karimi
Usage: galah --provider PROVIDER --model MODEL [--server-url SERVER-URL] [--temperature TEMPERATURE] [--api-key API-KEY] [--cloud-location CLOUD-LOCATION] [--cloud-project CLOUD-PROJECT] [--interface INTERFACE] [--config-file CONFIG-FILE] [--event-log-file EVENT-LOG-FILE] [--cache-db-file CACHE-DB-FILE] [--cache-duration CACHE-DURATION] [--log-level LOG-LEVEL]
Options:
--provider PROVIDER, -p PROVIDER
LLM provider (openai, googleai, gcp-vertex, anthropic, cohere, ollama) [env: LLM_PROVIDER]
--model MODEL, -m MODEL
LLM model (e.g. gpt-3.5-turbo-1106, gemini-1.5-pro-preview-0409) [env: LLM_MODEL]
--server-url SERVER-URL, -u SERVER-URL
LLM Server URL (required for Ollama) [env: LLM_SERVER_URL]
--temperature TEMPERATURE, -t TEMPERATURE
LLM sampling temperature (0-2). Higher values make the output more random [default: 1, env: LLM_TEMPERATURE]
--api-key API-KEY, -k API-KEY
LLM API Key [env: LLM_API_KEY]
--cloud-location CLOUD-LOCATION
LLM cloud location region (required for GCP ' s Vertex AI) [env: LLM_CLOUD_LOCATION]
--cloud-project CLOUD-PROJECT
LLM cloud project ID (required for GCP ' s Vertex AI) [env: LLM_CLOUD_PROJECT]
--interface INTERFACE, -i INTERFACE
interface to serve on
--config-file CONFIG-FILE, -c CONFIG-FILE
Path to config file [default: config/config.yaml]
--event-log-file EVENT-LOG-FILE, -o EVENT-LOG-FILE
Path to event log file [default: event_log.json]
--cache-db-file CACHE-DB-FILE, -f CACHE-DB-FILE
Path to database file for response caching [default: cache.db]
--cache-duration CACHE-DURATION, -d CACHE-DURATION
Cache duration for generated responses (in hours). Use 0 to disable caching, and -1 for unlimited caching (no expiration). [default: 24]
--log-level LOG-LEVEL, -l LOG-LEVEL
Log level (debug, info, error, fatal) [default: info]
--help, -h display this help and exit% git clone [email protected]:0x4D31/galah.git
% cd galah
% mkdir logs
% export LLM_API_KEY=your-api-key
% docker build -t galah-image .
% docker run -d --name galah-container -p 8080:8080 -v $( pwd ) /logs:/galah/logs -e LLM_API_KEY galah-image -o logs/galah.json -p openai -m gpt-3.5-turbo-1106./galah -p gcp-vertex -m gemini-1.0-pro-002 --cloud-project galah-test --cloud-location us-central1 --temperature 0.2 --cache-duration 0 % curl -i http://localhost:8080/.aws/credentials
HTTP/1.1 200 OK
Date: Sun, 26 May 2024 16:37:26 GMT
Content-Length: 116
Content-Type: text/plain; charset=utf-8
[default]
aws_access_key_id = AKIAIOSFODNN7EXAMPLE
aws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
JSON Event Log:
{
"eventTime": "2024-05-26T18:37:26.742418+02:00",
"httpRequest": {
"body": "",
"bodySha256": "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855",
"headers": "User-Agent: [curl/7.71.1], Accept: [*/*]",
"headersSorted": "Accept,User-Agent",
"headersSortedSha256": "cf69e186169279bd51769f29d122b07f1f9b7e51bf119c340b66fbd2a1128bc9",
"method": "GET",
"protocolVersion": "HTTP/1.1",
"request": "/.aws/credentials",
"userAgent": "curl/7.71.1"
},
"httpResponse": {
"headers": {
"Content-Length": "127",
"Content-Type": "text/plain"
},
"body": "[default]naws_access_key_id = AKIAIOSFODNN7EXAMPLEnaws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEYn"
},
"level": "info",
"llm": {
"model": "gemini-1.0-pro-002",
"provider": "gcp-vertex",
"temperature": 0.2
},
"msg": "successfulResponse",
"port": "8080",
"sensorName": "mbp.local",
"srcHost": "localhost",
"srcIP": "::1",
"srcPort": "51725",
"tags": null,
"time": "2024-05-26T18:37:26.742447+02:00"
}
Weitere Beispiele finden Sie hier.