Il s'agit d'un client Scala à part entière intuitif à part entière pour l'API PineCone prenant en charge tous les opérations / points de terminaison index, vecteur, collection, inférence et assistant, fourni dans deux services pratiques appelés pineconevectorService et pineConeIndexservice. Les appels pris en charge sont:
PineconeAssistantService et PineconeAssistantFileService Notez que pour être cohérent avec la dénomination de l'API de Pinecone, les noms de fonction de service correspondent exactement aux titres / descriptions des points de terminaison de l'API avec CamelCase. De plus, nous avons visé la LIB à être autonome avec le moins de dépendances possible, nous avons fini par utiliser seulement deux libs play-ahc-ws-standalone et play-ws-standalone-json (au niveau supérieur).
✔️ IMPORTANT : Il s'agit d'une bibliothèque «entretenue par la communauté» et, en tant que telle, n'a aucun rapport avec PineCone Company.
Consultez un article sur la lib / client sur Medium. De plus, si vous souhaitez voir des exemples pratiques immédiatement, accédez aux exemples de pinone ou les modules d'exemples d'Openai + Pinecone.
Les versions Scala actuellement prises en charge sont 2.12, 2.13 et 3 .
Pour tirer la bibliothèque, vous devez ajouter la dépendance suivante à votre build.sbt
"io.cequence" %% "pinecone-scala-client" % "1.2.2"
ou à pom.xml (si vous utilisez maven)
<dependency>
<groupId>io.cequence</groupId>
<artifactId>pinecone-scala-client_2.12</artifactId>
<version>1.2.2</version>
</dependency>
PINECONE_SCALA_CLIENT_API_KEY et PINECONE_SCALA_CLIENT_ENV si le service basé sur les pods est utilisé Ia Obtention de PineconeIndexService
Vous devez d'abord fournir un contexte d'exécution implicite ainsi que matérialiser Akka, par exemple, comme
implicit val ec = ExecutionContext .global
implicit val materializer = Materializer ( ActorSystem ())Ensuite, vous pouvez obtenir un service (POD ou sans serveur) de l'une des manières suivantes.
Config variables env. import io . cequence . pineconescala . service . PineconeIndexServiceFactory . FactoryImplicits
val service = PineconeIndexServiceFactory ().asOne val config = ConfigFactory .load( " path_to_my_custom_config " )
val service = PineconeIndexServiceFactory (config).asOnePineconePodBasedIndexService val service = PineconeIndexServiceFactory (
apiKey = " your_api_key " ,
environment = " your_env " // e.g. "northamerica-northeast1-gcp
)PineconeServerlessIndexService val service = PineconeIndexServiceFactory (
apiKey = " your_api_key "
) Ib. Obtention de PineconeVectorService
Identique à PineconeIndexService , vous devez d'abord fournir un contexte d'exécution implicite et une matérialisation Akka. Ensuite, vous pouvez obtenir un service de l'une des manières suivantes.
Config ). Notez que si l'index avec un prénom n'est pas disponible, l'usine ne le rendra None . PineconeVectorServiceFactory ( " index_name " ).map { serviceOption =>
val service = serviceOption.getOrElse(
throw new Exception ( s " Index with a given name does not exist. " )
)
// do something with the service
} IC. Obtention de PineconeInferenceService
Identique à PineconeIndexService , vous devez d'abord fournir un contexte d'exécution implicite et une matérialisation Akka. Ensuite, vous pouvez obtenir un service de l'une des manières suivantes.
val service = PineconeInferenceServiceFactory () val config = ConfigFactory .load( " path_to_my_custom_config " )
val service = PineconeInferenceServiceFactory (config) val service = PineconeInferenceServiceFactory (
apiKey = " your_api_key "
) Identifiant. Obtention PineconeAssistantService
val service = PineconeAssistantServiceFactory () val config = ConfigFactory .load( " path_to_my_custom_config " )
val service = PineconeAssistantServiceFactory (config) val service = PineconeAssistantServiceFactory (
apiKey = " your_api "
) C'est-à-dire Obtention PineconeAssistantFileService
val service = PineconeAssistantFileServiceFactory () val config = ConfigFactory .load( " path_to_my_custom_config " )
val service = PineconeAssistantFileServiceFactory (config) val service = PineconeAssistantFileServiceFactory (
apiKey = " your_api "
)Ii Fonctions d'appel
Une documentation complète de chaque appel avec ses entrées et paramètres respectifs est fournie dans PineConevectorService et PineConeIndexService. Étant donné que tous les appels sont asynchrones, ils renvoient des réponses enveloppées à Future .
Exemples:
Opérations d'index
pineconeIndexService.listIndexes.map(indexes =>
indexes.foreach(println)
) import io . cequence . pineconescala . domain . response . CreateResponse
pineconeIndexService.createIndex(
name = " auto-gpt-test " ,
dimension = 1536
).map {
case CreateResponse . Created => println( " Index successfully created. " )
case CreateResponse . BadRequest => println( " Index creation failed. Request exceeds quota or an invalid index name. " )
case CreateResponse . AlreadyExists => println( " Index with a given name already exists. " )
} pineconeIndexService.describeIndex( " index_name " ).map(indexInfo =>
// if not found, indexInfo will be None
println(indexInfo)
) import io . cequence . pineconescala . domain . response . DeleteResponse
pineconeIndexService.deleteIndex( " index_name " ).map {
case DeleteResponse . Deleted => println( " Index successfully deleted. " )
case DeleteResponse . NotFound => println( " Index with a given name not found. " )
} import io . cequence . pineconescala . domain . response . ConfigureIndexResponse
pineconeIndexService.configureIndex(
name = " index_name " ,
replicas = Some ( 2 ),
pod_type = Some ( PodType .p1_x2)
).map {
case ConfigureIndexResponse . Updated => println( " Index successfully updated. " )
case ConfigureIndexResponse . BadRequestNotEnoughQuota => println( " Index update failed. Not enough quota. " )
case ConfigureIndexResponse . NotFound => println( " Index with a given name not found. " )
}Opérations de collecte
pineconeIndexService.listCollections.map(collectionNames =>
println(collectionNames.mkString( " , " ))
) import io . cequence . pineconescala . domain . response . CreateResponse
pineconeIndexService.createCollection(
name = " collection_name " ,
source = " index_name "
).map {
case CreateResponse . Created => println( " Collection successfully created. " )
case CreateResponse . BadRequest => println( " Collection creation failed. Request exceeds quota or an invalid collection name. " )
case CreateResponse . AlreadyExists => println( " Collection with a given name already exists. " )
} pineconeIndexService.describeCollection( " collection_name " ).map(collectionInfo =>
// if not found, collectionInfo will be None
println(collectionInfo)
) import io . cequence . pineconescala . domain . response . DeleteResponse
pineconeIndexService.deleteCollection( " collection_name " ).map {
case DeleteResponse . Deleted => println( " Collection successfully deleted. " )
case DeleteResponse . NotFound => println( " Collection with a given name not found. " )
}Opérations vectorielles
val dimension = 1536
pineconeVectorService.upsert(
vectors = Seq (
PVector (
id = " 666 " ,
values = Seq .fill(dimension)( Random .nextDouble),
metadata = Map (
" is_relevant " -> " not really but for testing it's ok, you know " ,
" food_quality " -> " brunches are perfect but don't go there before closing time "
)
),
PVector (
id = " 777 " ,
values = Seq .fill(dimension)( Random .nextDouble),
metadata = Map (
" is_relevant " -> " very much so " ,
" food_quality " -> " burritos are the best! "
)
)
),
namespace = " my_namespace " ,
).map(vectorUpsertedCount =>
println( s " Upserted $vectorUpsertedCount vectors. " )
) val fetchedValues = ... // vectors fetched from somewhere
pineconeVectorService.update(
id = " 777 " ,
namespace = " my_namespace " ,
values = fetchedValues.map(_ / 100 ), // divide fetched values by 100
sparseValues = Some ( SparseVector (
indices = Seq ( 1 , 2 , 3 ),
values = Seq ( 8.8 , 7.7 , 2.2 )
)),
setMetaData = Map (
" solid_info " -> " this is the source of the truth "
)
).map(_ =>
println( s " Vectors updated. " )
) pineconeVectorService.query(
vector = Seq .fill( 1536 )( Random .nextDouble), // some values/embeddings
namespace = " my_namespace "
).map { queryResponse =>
queryResponse.matches.foreach { matchInfo =>
println( s " Matched vector id: ${matchInfo.id} " )
println( s " Matched vector values: ${matchInfo.values.take( 20 ).mkString( " , " )} .. " )
println( s " Matched vector score: ${matchInfo.score} " )
println( s " Matched vector metadata: ${matchInfo.metadata} " )
}
} pineconeVectorService.query(
vector = Seq .fill( 1536 )( Random .nextDouble), // some values/embeddings
namespace = " my_namespace " ,
settings = QuerySettings (
topK = 5 ,
includeValues = true ,
includeMetadata = true
)
).map { queryResponse =>
queryResponse.matches.foreach { matchInfo =>
println( s " Matched vector id: ${matchInfo.id} " )
println( s " Matched vector values: ${matchInfo.values.take( 20 ).mkString( " , " )} .. " )
println( s " Matched vector score: ${matchInfo.score} " )
println( s " Matched vector metadata: ${matchInfo.metadata} " )
}
} pineconeVectorService.fetch(
ids = Seq ( " 666 " , " 777 " ),
namespace = " my_namespace "
).map { fetchResponse =>
fetchResponse.vectors.values.map { pVector =>
println( s " Fetched vector id: ${pVector.id} " )
println( s " Fetched vector values: ${pVector.values.take( 20 ).mkString( " , " )} .. " )
println( s " Fetched vector metadata: ${pVector.metadata} " )
}
} pineconeVectorService.delete(
ids = Seq ( " 666 " , " 777 " ),
namespace = " my_namespace "
).map(_ =>
println( " Vectors deleted " )
) pineconeVectorService.deleteAll(
namespace = " my_namespace "
).map(_ =>
println( " All vectors deleted " )
) pineconeVectorService.describeIndexStats.map(stats =>
println(stats)
)Opérations d'inférence
pineconeInferenceService.createEmbeddings(
Seq ( " The quick brown fox jumped over the lazy dog " )
).map { embeddings =>
println(embeddings.data.mkString( " n " ))
} pineconeInferenceService.rerank(
query = " The tech company Apple is known for its innovative products like the iPhone. " ,
documents = Seq (...)
).map(
_.data.foreach(println)
) pineconeInferenceService.evaluate(
question = " What are the capital cities of France, England and Spain? " ,
answer = " Paris is a city of France and Barcelona of Spain " ,
groundTruthAnswer = " Paris is the capital city of France, London of England and Madrid of Spain "
).map { response =>
println(response)
}** Opérations assistantes **
pineconeAssistantService.listAssistants.map(assistants =>
println(assistants.mkString( " , " ))
) import io . cequence . pineconescala . domain . response . CreateResponse
pineconeAssistantService.createAssistant(
name = " assistant_name " ,
description = " assistant_description " ,
assistantType = " assistant_type "
).map {
case CreateResponse . Created => println( " Assistant successfully created. " )
case CreateResponse . BadRequest => println( " Assistant creation failed. Request exceeds quota or an invalid assistant name. " )
case CreateResponse . AlreadyExists => println( " Assistant with a given name already exists. " )
} pineconeAssistantService.describeAssistant( " assistant_name " ).map(assistant =>
// if not found, assistant will be None
println(assistant)
) import io . cequence . pineconescala . domain . response . DeleteResponse
pineconeAssistantService.deleteAssistant( " assistant_name " ).map {
case DeleteResponse . Deleted => println( " Assistant successfully deleted. " )
case DeleteResponse . NotFound => println( " Assistant with a given name not found. " )
} pineconeAssistantService.listFiles( " assistant_name " ).map(files =>
println(files.mkString( " , " ))
) import io . cequence . pineconescala . domain . response . CreateResponse
pineconeAssistantService.uploadFile(
assistantName = " assistant_name " ,
filePath = " path_to_file "
).map {
case CreateResponse . Created => println( " File successfully uploaded. " )
case CreateResponse . BadRequest => println( " File upload failed. Request exceeds quota or an invalid file path. " )
case CreateResponse . AlreadyExists => println( " File with a given name already exists. " )
} pineconeAssistantService.describeFile( " assistant_name " , " file_name " ).map(file =>
// if not found, file will be None
println(file)
) pineconeAssistantService.chatWithAssistant(
" assistant_name " ,
" What is the maximum height of a red pine? "
).map(response =>
println(response)
)Pour les démos prêtes à l'emploi pls. Reportez-vous aux modules distincts:
J'ai eu une exception de temps mort. Comment puis-je modifier le paramètre de délai d'expiration?
Vous pouvez le faire soit en passant les timeouts mort à Pinecone{Vector,Index}ServiceFactory ou, si vous utilisez votre propre fichier de configuration, vous pouvez simplement l'ajouter en tant que:
pinecone-scala-client {
timeouts {
requestTimeoutSec = 200
readTimeoutSec = 200
connectTimeoutSec = 5
pooledConnectionIdleTimeoutSec = 60
}
}
J'ai une exception comme com.typesafe.config.ConfigException$UnresolvedSubstitution: pinecone-scala-client.conf @ jar:file:.../io/cequence/pinecone-scala-client_2.13/1.2.2/pinecone-scala-client_2.13-1.2.2.jar!/pinecone-scala-client.conf: 4: Could not resolve substitution to a value: ${PINECONE_SCALA_CLIENT_API_KEY} . Que dois-je faire?
Définissez l'env. variable PINECONE_SCALA_CLIENT_API_KEY . Si vous n'avez pas un registre ici.
Tout a l'air cool. Je veux discuter avec vous de votre recherche et développement?
Il suffit de nous envoyer un e-mail à [email protected].
Cette bibliothèque est disponible et publiée sous forme d'open source aux termes de la licence MIT.
Ce projet est open-source et accueille toute contribution ou rétroaction (ici).
Le développement de cette bibliothèque a été soutenu par - CEQUENCE.IO - The future of contracting
Créé et entretenu par Peter Banda.