Dies ist ein intuitiver Async-vollwertiger Scala-Client für die Pinecone-API, das alle verfügbaren Index-, Vektor-, Sammlung-, Inferenz- und Assistenzvorgänge/-endpunkte unterstützt, die in zwei praktischen Diensten, die PineConeVectorService und PineConeIndexService bezeichnet werden, bereitgestellt werden. Die unterstützten Anrufe sind:
PineconeAssistantService und PineconeAssistantFileService Beachten Sie, dass die Service -Funktionsnamen genau den API -Endpunkttiteln/-beschreibungen mit Camelcase übereinstimmen, um mit der Pinecone -API -Benennungsnamen übereinzustimmen. Außerdem zielten wir an play-ws-standalone-json dass die LIB mit den wenigsten Abhängigkeiten in sich geschlossen ist play-ahc-ws-standalone
✔️ WICHTIG : Dies ist eine "in der Gemeinschaft gepflegte" Bibliothek und hat als solche keinen Zusammenhang mit Tinecone Company.
Schauen Sie sich einen Artikel über den LIB/Client auf Medium an. Wenn Sie sofort praktische Beispiele sehen möchten, gehen Sie zu den Pinecone-Beispielen oder zu OpenAI + Pinecone-Beispielen Modulen.
Die derzeit unterstützten Scala -Versionen sind 2,12, 2,13 und 3 .
Um die Bibliothek zu ziehen, müssen Sie Ihrem Build die folgende Abhängigkeit hinzufügen.
"io.cequence" %% "pinecone-scala-client" % "1.2.2"
oder pom.xml (wenn Sie Maven verwenden)
<dependency>
<groupId>io.cequence</groupId>
<artifactId>pinecone-scala-client_2.12</artifactId>
<version>1.2.2</version>
</dependency>
PINECONE_SCALA_CLIENT_API_KEY und PINECONE_SCALA_CLIENT_ENV wenn POD-basierter Dienst verwendet wird Ia. PineconeIndexService erhalten
Zuerst müssen Sie einen implizite Ausführungskontext sowie Akka Materializer, z. B. AS, bereitstellen
implicit val ec = ExecutionContext .global
implicit val materializer = Materializer ( ActorSystem ())Anschließend können Sie auf eine der folgenden Arten einen Dienst (POD oder serverless basieren) erhalten.
Config definierten Variablen festgelegt wird) import io . cequence . pineconescala . service . PineconeIndexServiceFactory . FactoryImplicits
val service = PineconeIndexServiceFactory ().asOne val config = ConfigFactory .load( " path_to_my_custom_config " )
val service = PineconeIndexServiceFactory (config).asOnePineconePodBasedIndexService val service = PineconeIndexServiceFactory (
apiKey = " your_api_key " ,
environment = " your_env " // e.g. "northamerica-northeast1-gcp
)PineconeServerlessIndexService val service = PineconeIndexServiceFactory (
apiKey = " your_api_key "
) Ib. Erhalten von PineconeVectorService
Wie bei PineconeIndexService müssen Sie zunächst implizite Ausführungskontext und Akka Materializer bereitstellen. Dann können Sie einen Dienst auf eine der folgenden Arten erhalten.
Config festgelegt wird). Beachten Sie, dass die Fabrik None zurückgibt, wenn der Index mit einem angegebenen Namen nicht verfügbar ist. PineconeVectorServiceFactory ( " index_name " ).map { serviceOption =>
val service = serviceOption.getOrElse(
throw new Exception ( s " Index with a given name does not exist. " )
)
// do something with the service
} IC. Erhalten von PineconeInferenceService
Wie bei PineconeIndexService müssen Sie zunächst implizite Ausführungskontext und Akka Materializer bereitstellen. Dann können Sie einen Dienst auf eine der folgenden Arten erhalten.
val service = PineconeInferenceServiceFactory () val config = ConfigFactory .load( " path_to_my_custom_config " )
val service = PineconeInferenceServiceFactory (config) val service = PineconeInferenceServiceFactory (
apiKey = " your_api_key "
) Ausweis. Erhalten von PineconeAssistantService
val service = PineconeAssistantServiceFactory () val config = ConfigFactory .load( " path_to_my_custom_config " )
val service = PineconeAssistantServiceFactory (config) val service = PineconeAssistantServiceFactory (
apiKey = " your_api "
) Dh. Erhalten von PineconeAssistantFileService
val service = PineconeAssistantFileServiceFactory () val config = ConfigFactory .load( " path_to_my_custom_config " )
val service = PineconeAssistantFileServiceFactory (config) val service = PineconeAssistantFileServiceFactory (
apiKey = " your_api "
)Ii. Aufrufen von Funktionen
Die vollständige Dokumentation jedes Anrufs mit seinen jeweiligen Eingängen und Einstellungen finden Sie in PineConeVectorService und PineconeIndexService. Da alle Anrufe asynchronisiert sind, geben sie Antworten zurück, die in Future eingepackt sind.
Beispiele:
Indexoperationen
pineconeIndexService.listIndexes.map(indexes =>
indexes.foreach(println)
) import io . cequence . pineconescala . domain . response . CreateResponse
pineconeIndexService.createIndex(
name = " auto-gpt-test " ,
dimension = 1536
).map {
case CreateResponse . Created => println( " Index successfully created. " )
case CreateResponse . BadRequest => println( " Index creation failed. Request exceeds quota or an invalid index name. " )
case CreateResponse . AlreadyExists => println( " Index with a given name already exists. " )
} pineconeIndexService.describeIndex( " index_name " ).map(indexInfo =>
// if not found, indexInfo will be None
println(indexInfo)
) import io . cequence . pineconescala . domain . response . DeleteResponse
pineconeIndexService.deleteIndex( " index_name " ).map {
case DeleteResponse . Deleted => println( " Index successfully deleted. " )
case DeleteResponse . NotFound => println( " Index with a given name not found. " )
} import io . cequence . pineconescala . domain . response . ConfigureIndexResponse
pineconeIndexService.configureIndex(
name = " index_name " ,
replicas = Some ( 2 ),
pod_type = Some ( PodType .p1_x2)
).map {
case ConfigureIndexResponse . Updated => println( " Index successfully updated. " )
case ConfigureIndexResponse . BadRequestNotEnoughQuota => println( " Index update failed. Not enough quota. " )
case ConfigureIndexResponse . NotFound => println( " Index with a given name not found. " )
}Sammeloperationen
pineconeIndexService.listCollections.map(collectionNames =>
println(collectionNames.mkString( " , " ))
) import io . cequence . pineconescala . domain . response . CreateResponse
pineconeIndexService.createCollection(
name = " collection_name " ,
source = " index_name "
).map {
case CreateResponse . Created => println( " Collection successfully created. " )
case CreateResponse . BadRequest => println( " Collection creation failed. Request exceeds quota or an invalid collection name. " )
case CreateResponse . AlreadyExists => println( " Collection with a given name already exists. " )
} pineconeIndexService.describeCollection( " collection_name " ).map(collectionInfo =>
// if not found, collectionInfo will be None
println(collectionInfo)
) import io . cequence . pineconescala . domain . response . DeleteResponse
pineconeIndexService.deleteCollection( " collection_name " ).map {
case DeleteResponse . Deleted => println( " Collection successfully deleted. " )
case DeleteResponse . NotFound => println( " Collection with a given name not found. " )
}Vektoroperationen
val dimension = 1536
pineconeVectorService.upsert(
vectors = Seq (
PVector (
id = " 666 " ,
values = Seq .fill(dimension)( Random .nextDouble),
metadata = Map (
" is_relevant " -> " not really but for testing it's ok, you know " ,
" food_quality " -> " brunches are perfect but don't go there before closing time "
)
),
PVector (
id = " 777 " ,
values = Seq .fill(dimension)( Random .nextDouble),
metadata = Map (
" is_relevant " -> " very much so " ,
" food_quality " -> " burritos are the best! "
)
)
),
namespace = " my_namespace " ,
).map(vectorUpsertedCount =>
println( s " Upserted $vectorUpsertedCount vectors. " )
) val fetchedValues = ... // vectors fetched from somewhere
pineconeVectorService.update(
id = " 777 " ,
namespace = " my_namespace " ,
values = fetchedValues.map(_ / 100 ), // divide fetched values by 100
sparseValues = Some ( SparseVector (
indices = Seq ( 1 , 2 , 3 ),
values = Seq ( 8.8 , 7.7 , 2.2 )
)),
setMetaData = Map (
" solid_info " -> " this is the source of the truth "
)
).map(_ =>
println( s " Vectors updated. " )
) pineconeVectorService.query(
vector = Seq .fill( 1536 )( Random .nextDouble), // some values/embeddings
namespace = " my_namespace "
).map { queryResponse =>
queryResponse.matches.foreach { matchInfo =>
println( s " Matched vector id: ${matchInfo.id} " )
println( s " Matched vector values: ${matchInfo.values.take( 20 ).mkString( " , " )} .. " )
println( s " Matched vector score: ${matchInfo.score} " )
println( s " Matched vector metadata: ${matchInfo.metadata} " )
}
} pineconeVectorService.query(
vector = Seq .fill( 1536 )( Random .nextDouble), // some values/embeddings
namespace = " my_namespace " ,
settings = QuerySettings (
topK = 5 ,
includeValues = true ,
includeMetadata = true
)
).map { queryResponse =>
queryResponse.matches.foreach { matchInfo =>
println( s " Matched vector id: ${matchInfo.id} " )
println( s " Matched vector values: ${matchInfo.values.take( 20 ).mkString( " , " )} .. " )
println( s " Matched vector score: ${matchInfo.score} " )
println( s " Matched vector metadata: ${matchInfo.metadata} " )
}
} pineconeVectorService.fetch(
ids = Seq ( " 666 " , " 777 " ),
namespace = " my_namespace "
).map { fetchResponse =>
fetchResponse.vectors.values.map { pVector =>
println( s " Fetched vector id: ${pVector.id} " )
println( s " Fetched vector values: ${pVector.values.take( 20 ).mkString( " , " )} .. " )
println( s " Fetched vector metadata: ${pVector.metadata} " )
}
} pineconeVectorService.delete(
ids = Seq ( " 666 " , " 777 " ),
namespace = " my_namespace "
).map(_ =>
println( " Vectors deleted " )
) pineconeVectorService.deleteAll(
namespace = " my_namespace "
).map(_ =>
println( " All vectors deleted " )
) pineconeVectorService.describeIndexStats.map(stats =>
println(stats)
)Inferenzvorgänge
pineconeInferenceService.createEmbeddings(
Seq ( " The quick brown fox jumped over the lazy dog " )
).map { embeddings =>
println(embeddings.data.mkString( " n " ))
} pineconeInferenceService.rerank(
query = " The tech company Apple is known for its innovative products like the iPhone. " ,
documents = Seq (...)
).map(
_.data.foreach(println)
) pineconeInferenceService.evaluate(
question = " What are the capital cities of France, England and Spain? " ,
answer = " Paris is a city of France and Barcelona of Spain " ,
groundTruthAnswer = " Paris is the capital city of France, London of England and Madrid of Spain "
).map { response =>
println(response)
}** Assistentenbetrieb **
pineconeAssistantService.listAssistants.map(assistants =>
println(assistants.mkString( " , " ))
) import io . cequence . pineconescala . domain . response . CreateResponse
pineconeAssistantService.createAssistant(
name = " assistant_name " ,
description = " assistant_description " ,
assistantType = " assistant_type "
).map {
case CreateResponse . Created => println( " Assistant successfully created. " )
case CreateResponse . BadRequest => println( " Assistant creation failed. Request exceeds quota or an invalid assistant name. " )
case CreateResponse . AlreadyExists => println( " Assistant with a given name already exists. " )
} pineconeAssistantService.describeAssistant( " assistant_name " ).map(assistant =>
// if not found, assistant will be None
println(assistant)
) import io . cequence . pineconescala . domain . response . DeleteResponse
pineconeAssistantService.deleteAssistant( " assistant_name " ).map {
case DeleteResponse . Deleted => println( " Assistant successfully deleted. " )
case DeleteResponse . NotFound => println( " Assistant with a given name not found. " )
} pineconeAssistantService.listFiles( " assistant_name " ).map(files =>
println(files.mkString( " , " ))
) import io . cequence . pineconescala . domain . response . CreateResponse
pineconeAssistantService.uploadFile(
assistantName = " assistant_name " ,
filePath = " path_to_file "
).map {
case CreateResponse . Created => println( " File successfully uploaded. " )
case CreateResponse . BadRequest => println( " File upload failed. Request exceeds quota or an invalid file path. " )
case CreateResponse . AlreadyExists => println( " File with a given name already exists. " )
} pineconeAssistantService.describeFile( " assistant_name " , " file_name " ).map(file =>
// if not found, file will be None
println(file)
) pineconeAssistantService.chatWithAssistant(
" assistant_name " ,
" What is the maximum height of a red pine? "
).map(response =>
println(response)
)Für bereitgestellte Demos pls. Siehe separate Module:
Ich habe eine Ausnahme in der Zeitüberschreitung. Wie kann ich die Timeout -Einstellung ändern?
Sie können dies entweder durch die timeouts -Param an Pinecone{Vector,Index}ServiceFactory oder, wenn Sie Ihre eigene Konfigurationsdatei verwenden, übergeben, können Sie sie einfach als:
pinecone-scala-client {
timeouts {
requestTimeoutSec = 200
readTimeoutSec = 200
connectTimeoutSec = 5
pooledConnectionIdleTimeoutSec = 60
}
}
Ich habe eine Ausnahme wie com.typesafe.config.ConfigException$UnresolvedSubstitution: pinecone-scala-client.conf @ jar:file:.../io/cequence/pinecone-scala-client_2.13/1.2.2/pinecone-scala-client_2.13-1.2.2.jar!/pinecone-scala-client.conf: 4: Could not resolve substitution to a value: ${PINECONE_SCALA_CLIENT_API_KEY} . Was soll ich tun?
Setzen Sie die env. Variable PINECONE_SCALA_CLIENT_API_KEY . Wenn Sie hier kein Register haben.
Es sieht alles cool aus. Ich möchte mit Ihnen über Ihre Forschung und Entwicklung chatten?
Schicken Sie uns einfach eine E-Mail unter [email protected].
Diese Bibliothek ist unter den Bedingungen der MIT -Lizenz als Open Source veröffentlicht und veröffentlicht.
Dieses Projekt ist Open-Source und begrüßt jeden Beitrag oder Feedback (hier).
Die Entwicklung dieser Bibliothek wurde von - cequence.io - The future of contracting unterstützt
Von Peter Banda geschaffen und gepflegt.