chinese_ulmfit
1.0.0
Modèle de langage universel ajusté pour la classification du texte
Télécharger le modèle pré-formé
Créer un environnement virtuel (vous pouvez configurer la source Tsinghua conda)
conda env create -f env.ymlUnzip Wikipedia chinois
python -m gensim.scripts.segment_wiki -i -f /data/zhwiki-latest-pages-articles.xml.bz2 -o tmp/wiki2018-11-14.json.gzParticipe wikipedia
python preprocessing.py segment-wiki --input_file=tmp/wiki2018-11-14.json.gz --output_file=tmp/wiki2018-11-14.words.pklMatériel de segmentation des mots
python preprocessing.py segment-csv --input_file=data/ch_auto.csv --output_file=tmp/ch_auto.words.pkl --label_file=tmp/ch_auto.labels.npytokenize wikipedia matériel
python preprocessing.py tokenize --input_file=tmp/wiki2018-11-14.words.pkl --output_file=tmp/wiki2018-11-14.ids.npy --mapping_file=tmp/wiki2018-11-14.mapping.pkltokenize matériaux de terrain
python preprocessing.py tokenize --input_file=tmp/ch_auto.words.pkl --output_file=tmp/ch_auto.ids.npy --mapping_file=tmp/ch_auto.mapping.pklPré-formation
python pretraining.py --input_file=tmp/wiki2018-11-14.ids.npy --mapping_file=tmp/wiki2018-11-14.mapping.pkl --dir_path=tmpAjustement fin
python finetuning.py --input_file=tmp/ch_auto.ids.npy --mapping_file=tmp/ch_auto.mapping.pkl --pretrain_model_file=tmp/models/wiki2018-11-14.h5 --pretrain_mapping_file=tmp/wiki2018-11-14.mapping.pkl --dir_path=tmp --model_id=ch_autoClassificateurs de formation
python3 train_classifier.py --id_file=tmp/ch_auto.ids.npy --label_file=tmp/ch_auto.labels.npy --mapping_file=tmp/ch_auto.mapping.pkl --encoder_file=ch_auto_enctest
python3 predicting.py --mapping_file=tmp/ch_auto.mapping.pkl --classifier_filename=tmp/models/classifier_1.h5 --num_class=2