chinese_ulmfit
1.0.0
Allgemeine Sprachmodell Feinabstimmung für die Textklassifizierung
Laden Sie das vorgebildete Modell herunter
Erstellen Sie eine virtuelle Umgebung (Sie können Tsinghua Conda Source konfigurieren).
conda env create -f env.ymlChinesische Wikipedia entpacken
python -m gensim.scripts.segment_wiki -i -f /data/zhwiki-latest-pages-articles.xml.bz2 -o tmp/wiki2018-11-14.json.gzPartizip Wikipedia
python preprocessing.py segment-wiki --input_file=tmp/wiki2018-11-14.json.gz --output_file=tmp/wiki2018-11-14.words.pklWortsegmentierungsmaterial
python preprocessing.py segment-csv --input_file=data/ch_auto.csv --output_file=tmp/ch_auto.words.pkl --label_file=tmp/ch_auto.labels.npyTokenize Wikipedia -Material
python preprocessing.py tokenize --input_file=tmp/wiki2018-11-14.words.pkl --output_file=tmp/wiki2018-11-14.ids.npy --mapping_file=tmp/wiki2018-11-14.mapping.pklTokenize Feldmaterialien
python preprocessing.py tokenize --input_file=tmp/ch_auto.words.pkl --output_file=tmp/ch_auto.ids.npy --mapping_file=tmp/ch_auto.mapping.pklVorausbildung
python pretraining.py --input_file=tmp/wiki2018-11-14.ids.npy --mapping_file=tmp/wiki2018-11-14.mapping.pkl --dir_path=tmpFeinanpassung
python finetuning.py --input_file=tmp/ch_auto.ids.npy --mapping_file=tmp/ch_auto.mapping.pkl --pretrain_model_file=tmp/models/wiki2018-11-14.h5 --pretrain_mapping_file=tmp/wiki2018-11-14.mapping.pkl --dir_path=tmp --model_id=ch_autoTrainingsklassifizierer
python3 train_classifier.py --id_file=tmp/ch_auto.ids.npy --label_file=tmp/ch_auto.labels.npy --mapping_file=tmp/ch_auto.mapping.pkl --encoder_file=ch_auto_encprüfen
python3 predicting.py --mapping_file=tmp/ch_auto.mapping.pkl --classifier_filename=tmp/models/classifier_1.h5 --num_class=2