Zapret es gratuito y de código abierto. Cualquiera que lo obliga a descargar Zapret solo de su recurso requiere eliminar enlaces, videos, archivos, justificar estos requisitos de derechos de autor, viola la licencia.
DPI de contrarrestar autónomo, que no requiere conectar ningún servidor de terceros. Puede ayudar a evitar los bloqueos o desaceleración de los sitios HTTP (s), el análisis significativo de los protocolos TCP y UDP, por ejemplo, con el fin de bloquear la VPN.
El proyecto está dirigido principalmente a dispositivos integrados de baja potencia: enrutadores que trabajan bajo OpenWRT. Se admiten sistemas tradicionales de Linux, FreeBSD, OpenBSD, parcialmente macOS. En algunos casos, es posible atornillar la solución a varios firmware.
La mayor parte de la funcionalidad funciona en Windows.
En el caso más simple, está tratando con un DPI pasivo. El DPI pasivo puede leer el tráfico desde la transmisión, puede inyectar sus paquetes, pero no puede bloquear los paquetes de aprobación. Si la solicitud es "mala", la inyección pasiva de DPI del paquete RST, opcionalmente, complementándola con el paquete de redirección HTTP. Si el paquete falso se inyecta solo para el cliente, en este caso puede sobrevivir con los comandos iptables para la caída de RST y/o redirigir al enchufe de acuerdo con ciertas condiciones que deben seleccionarse para cada proveedor individualmente. Entonces damos vueltas las consecuencias de la operación del gatillo. Si un DPI pasivo dirige el paquete RST, incluido el servidor, no puede hacer nada al respecto. Su tarea es evitar el disparador del activador para el disparador. Los iptables solos no se pasarán por. Este proyecto está dirigido precisamente para evitar la prohibición y no eliminar sus consecuencias.
El DPI activo se coloca en una incisión del cable y puede soltar paquetes de acuerdo con cualquier criterio, incluidos los flujos de TCP y bloquear cualquier paquete que pertenezca al flujo.
¿Cómo evitar el desencadenante de la prohibición de la prohibición? Envíe algo con lo que DPI no cuenta y que el algoritmo para reconocer las solicitudes y su bloqueo lo rompe.
Algunos DPI no pueden reconocer la solicitud HTTP si se divide en segmentos TCP. Por ejemplo, una solicitud del tipo GET / HTTP/1.1rnHost: kinozal.tv...... enviamos 2 partes: primero hay GET , Host: / HTTP/1.1rnHost: kinozal.tv..... host: En algunos lugares, agregando una brecha adicional después del método: GET / => GET / o agregando un punto al final del nombre del host: Host: kinozal.tv.
También hay una magia más avanzada destinada a superar DPI a nivel de paquete.
Lea más sobre DPI:
https://habr.com/en/post/335436 o https://web.archive.org/web/2023033123644/https://habr.com/en/post/335436/
https://geneva.cs.umd.edu/papers/Geneva_ccs19.pdf
Anteriormente, antes de la introducción de sistemas TSPU universales, se utilizó un zoológico de varios DPI para proveedores. Algunos estaban activos, algún tipo de pasivo. Ahora el momento de los iptables simples finalmente se ha ido. En todas partes hay una TSPU DPI activa, pero en algunos lugares, el DPI antiguo adicional del zoológico puede permanecer innecesario. En este caso, debes recorrer varios DPI a la vez. Se están convirtiendo cada vez más cerraduras de conflicto, sobre las cuales aprenderá solo por el hecho de la inaccesibilidad de algo, esto no está en las listas. Se utilizan los coágulos de algunas de las direcciones IP (el bypass autónomo es imposible) y los protocolos (VPN). Algunos rangos de IP usan un filtro más estricto que reconoce los intentos de hacer trampa a través de la segmentación. Esto debe deberse a algunos servicios que están tratando de engañar a DPI de esta manera.
En resumen, las opciones se pueden clasificar de acuerdo con el siguiente esquema:
Para las opciones 2 y 3, se implementan programas TPWS y NFQWS, respectivamente. Para que funcionen, es necesario ejecutarlos con los parámetros deseados y redirigirles un cierto tráfico por Iptables o Nftabals.
Este programa es un modificador de paquete y el controlador de colas NFQueue. Para los sistemas BSD, hay una versión adaptada: DVTWS, recopilada de las mismas fuentes (ver documentación BSD).
@<config_file>|$<config_file> ; читать конфигурацию из файла. опция должна быть первой. остальные опции игнорируются.
--debug=0|1 ; 1=выводить отладочные сообщения
--dry-run ; проверить опции командной строки и выйти. код 0 - успешная проверка.
--comment ; любой текст (игнорируется)
--daemon ; демонизировать прогу
--pidfile=<file> ; сохранить PID в файл
--user=<username> ; менять uid процесса
--uid=uid[:gid] ; менять uid процесса
--qnum=N ; номер очереди N
--bind-fix4 ; пытаться решить проблему неверного выбора исходящего интерфейса для сгенерированных ipv4 пакетов
--bind-fix6 ; пытаться решить проблему неверного выбора исходящего интерфейса для сгенерированных ipv6 пакетов
--wsize=<winsize>[:<scale_factor>] ; менять tcp window size на указанный размер в SYN,ACK. если не задан scale_factor, то он не меняется (устарело !)
--wssize=<winsize>[:<scale_factor>] ; менять tcp window size на указанный размер в исходящих пакетах. scale_factor по умолчанию 0. (см. conntrack !)
--wssize-cutoff=[n|d|s]N ; изменять server window size в исходящих пакетах (n), пакетах данных (d), относительных sequence (s) по номеру меньше N
--ctrack-timeouts=S:E:F[:U] ; таймауты внутреннего conntrack в состояниях SYN, ESTABLISHED, FIN, таймаут udp. по умолчанию 60:300:60:60
--hostcase ; менять регистр заголовка "Host:" по умолчанию на "host:".
--hostnospace ; убрать пробел после "Host:" и переместить его в конец значения "User-Agent:" для сохранения длины пакета
--methodeol ; добавить перевод строки в unix стиле ('n') перед методом и убрать пробел из Host: : "GET / ... Host: domain.com" => "nGET / ... Host:domain.com"
--hostspell=HoST ; точное написание заголовка Host (можно "HOST" или "HoSt"). автоматом включает --hostcase
--domcase ; домен после Host: сделать таким : TeSt.cOm
--dpi-desync=[<mode0>,]<mode>[,<mode2] ; атака по десинхронизации DPI. mode : synack syndata fake fakeknown rst rstack hopbyhop destopt ipfrag1 multisplit multidisorder fakedsplit fakeddisorder ipfrag2 udplen tamper
--dpi-desync-fwmark=<int|0xHEX> ; бит fwmark для пометки десинхронизирующих пакетов, чтобы они повторно не падали в очередь. default = 0x40000000
--dpi-desync-ttl=<int> ; установить ttl для десинхронизирующих пакетов
--dpi-desync-ttl6=<int> ; установить ipv6 hop limit для десинхронизирующих пакетов. если не указано, используется значение ttl
--dpi-desync-autottl=[<delta>[:<min>[-<max>]]] ; режим auto ttl для ipv4 и ipv6. по умолчанию: 1:3-20. delta=0 отключает функцию.
--dpi-desync-autottl6=[<delta>[:<min>[-<max>]]] ; переопределение предыдущего параметра для ipv6
--dpi-desync-fooling=<fooling> ; дополнительные методики как сделать, чтобы фейковый пакет не дошел до сервера. none md5sig badseq badsum datanoack hopbyhop hopbyhop2
--dpi-desync-repeats=<N> ; посылать каждый генерируемый в nfqws пакет N раз (не влияет на остальные пакеты)
--dpi-desync-skip-nosni=0|1 ; 1(default)=не применять dpi desync для запросов без hostname в SNI, в частности для ESNI
--dpi-desync-split-pos=N|-N|marker+N|marker-N ; список через запятую маркеров для tcp сегментации в режимах split и disorder
--dpi-desync-split-seqovl=N|-N|marker+N|marker-N ; единичный маркер, определяющий величину перекрытия sequence в режимах split и disorder. для split поддерживается только положительное число.
--dpi-desync-split-seqovl-pattern=<filename>|0xHEX ; чем заполнять фейковую часть overlap
--dpi-desync-fakedsplit-pattern=<filename>|0xHEX ; чем заполнять фейки в fakedsplit/fakeddisorder
--dpi-desync-badseq-increment=<int|0xHEX> ; инкремент sequence number для badseq. по умолчанию -10000
--dpi-desync-badack-increment=<int|0xHEX> ; инкремент ack sequence number для badseq. по умолчанию -66000
--dpi-desync-any-protocol=0|1 ; 0(default)=работать только по http request и tls clienthello 1=по всем непустым пакетам данных
--dpi-desync-fake-http=<filename>|0xHEX ; файл, содержащий фейковый http запрос для dpi-desync=fake, на замену стандартному www.iana.org
--dpi-desync-fake-tls=<filename>|0xHEX ; файл, содержащий фейковый tls clienthello для dpi-desync=fake, на замену стандартному
--dpi-desync-fake-unknown=<filename>|0xHEX ; файл, содержащий фейковый пейлоад неизвестного протокола для dpi-desync=fake, на замену стандартным нулям 256 байт
--dpi-desync-fake-syndata=<filename>|0xHEX ; файл, содержащий фейковый пейлоад пакета SYN для режима десинхронизации syndata
--dpi-desync-fake-quic=<filename>|0xHEX ; файл, содержащий фейковый QUIC Initial
--dpi-desync-fake-dht=<filename>|0xHEX ; файл, содержащий фейковый пейлоад DHT протокола для dpi-desync=fake, на замену стандартным нулям 64 байт
--dpi-desync-fake-unknown-udp=<filename>|0xHEX ; файл, содержащий фейковый пейлоад неизвестного udp протокола для dpi-desync=fake, на замену стандартным нулям 64 байт
--dpi-desync-udplen-increment=<int> ; насколько увеличивать длину udp пейлоада в режиме udplen
--dpi-desync-udplen-pattern=<filename>|0xHEX ; чем добивать udp пакет в режиме udplen. по умолчанию - нули
--dpi-desync-start=[n|d|s]N ; применять dpi desync только в исходящих пакетах (n), пакетах данных (d), относительных sequence (s) по номеру больше или равно N
--dpi-desync-cutoff=[n|d|s]N ; применять dpi desync только в исходящих пакетах (n), пакетах данных (d), относительных sequence (s) по номеру меньше N
--hostlist=<filename> ; действовать только над доменами, входящими в список из filename. поддомены автоматически учитываются.
; в файле должен быть хост на каждой строке.
; список читается при старте и хранится в памяти в виде иерархической структуры для быстрого поиска.
; при изменении времени модификации файла он перечитывается автоматически по необходимости
; список может быть запакован в gzip. формат автоматически распознается и разжимается
; списков может быть множество. пустой общий лист = его отсутствие
; хосты извлекаются из Host: хедера обычных http запросов и из SNI в TLS ClientHello.
--hostlist-domains=<domain_list> ; фиксированный список доменов через зяпятую. можно использовать # в начале для комментирования отдельных доменов.
--hostlist-exclude=<filename> ; не применять дурение к доменам из листа. может быть множество листов. схема аналогична include листам.
--hostlist-exclude-domains=<domain_list> ; фиксированный список доменов через зяпятую. можно использовать # в начале для комментирования отдельных доменов.
--hostlist-auto=<filename> ; обнаруживать автоматически блокировки и заполнять автоматический hostlist (требует перенаправления входящего трафика)
--hostlist-auto-fail-threshold=<int> ; сколько раз нужно обнаружить ситуацию, похожую на блокировку, чтобы добавить хост в лист (по умолчанию: 3)
--hostlist-auto-fail-time=<int> ; все эти ситуации должны быть в пределах указанного количества секунд (по умолчанию: 60)
--hostlist-auto-retrans-threshold=<int> ; сколько ретрансмиссий запроса считать блокировкой (по умолчанию: 3)
--hostlist-auto-debug=<logfile> ; лог положительных решений по autohostlist. позволяет разобраться почему там появляются хосты.
--new ; начало новой стратегии (новый профиль)
--skip ; не использовать этот профиль . полезно для временной деактивации профиля без удаления параметров.
--filter-l3=ipv4|ipv6 ; фильтр версии ip для текущей стратегии
--filter-tcp=[~]port1[-port2]|* ; фильтр портов tcp для текущей стратегии. ~ означает инверсию. установка фильтра tcp и неустановка фильтра udp запрещает udp. поддерживается список через запятую.
--filter-udp=[~]port1[-port2]|* ; фильтр портов udp для текущей стратегии. ~ означает инверсию. установка фильтра udp и неустановка фильтра tcp запрещает tcp. поддерживается список через запятую.
--filter-l7=[http|tls|quic|wireguard|dht|unknown] ; фильтр протокола L6-L7. поддерживается несколько значений через запятую.
--ipset=<filename> ; включающий ip list. на каждой строчке ip или cidr ipv4 или ipv6. поддерживается множество листов и gzip. перечитка автоматическая.
--ipset-ip=<ip_list> ; фиксированный список подсетей через запятую. можно использовать # в начале для комментирования отдельных подсетей.
--ipset-exclude=<filename> ; исключающий ip list. на каждой строчке ip или cidr ipv4 или ipv6. поддерживается множество листов и gzip. перечитка автоматическая.
--ipset-exclude-ip=<ip_list> ; фиксированный список подсетей через запятую. можно использовать # в начале для комментирования отдельных подсетей.
--debug le permite mostrar un registro detallado de acciones en la consola, en syslog o en un archivo. El procedimiento para seguir las opciones puede ser importante. --debug se indica mejor desde el principio. Las opciones se analizan secuencialmente. Si el error verifica la opción y el caso aún no ha alcanzado el --debug , entonces los mensajes no se mostrarán en el archivo o syslog. Al iniciar sesión en el archivo, el proceso no mantiene abierto el archivo. En aras de cada grabación, el archivo se abre y luego se cierra. Entonces, el archivo se puede eliminar en cualquier momento, y se volverá a crear en el primer mensaje del registro. Pero tenga en cuenta que si comienza el proceso debajo de la raíz, será reemplazado por UID a no root. Al principio, el archivo cambia en el registro, de lo contrario la grabación será imposible. Si luego elimina el archivo y el proceso no tendrá derecho a crear un archivo en su directorio, el registro ya no se realizará. En lugar de eliminar, es mejor usar Truncate. En Shel, esto se puede hacer a través del comando ":> nombre de archivo"
Su esencia es la siguiente. Se agrega, modificada, modificada información (falsas) una solicitud original para que el sistema operativo del servidor transfiera la solicitud original al proceso del servidor sin cambios, y el DPI vio otro. El hecho de que no bloquee. El servidor ve una cosa, DPI es otra. DPI no entiende que la solicitud prohibida se transmite y no la bloquea.
Hay un arsenal de oportunidades para lograr tal resultado. Esta puede ser la transferencia de paquetes falsos para que alcancen DPI, pero no lleguen al servidor. Se puede usar fragmentación en el nivel TCP (segmentación) o en el nivel IP. Hay ataques basados en el juego con números de secuencia TCP o con un orden confuso de segmentos TCP. Los métodos se pueden combinar en varias versiones.
Las falsificaciones son paquetes generados por NFQWS separados que llevan información falsa para DPI. No deben llegar al servidor o pueden llegar, pero deben descartarse a ellos. De lo contrario, el desglose de la conexión TCP o la violación de la integridad del flujo transmitido, que está garantizado para romper el recurso. Hay una serie de métodos para resolver este problema.
md5sig agrega la opción de firma TCP MD5 . No funciona en todos los servidores. Los paquetes MD5 generalmente se descartan solo Linux.badsum estropea la cantidad de control de TCP. No funcionará si su dispositivo es para NAT, lo que no se pierde las bolsas con una silla de ruedas. La configuración más común del enrutador NAT en Linux no los pierde. La mayoría de los enrutadores caseros están construidos en Linux. La anidación se garantiza de la siguiente manera: SysSCTL Tuning por predeterminado net.netfilter.nf_conntrack_checksum=1 hace que Conntrack verifique los controles TCP y UDP de paquetes entrantes y configure el estado inválido para paquetes con una silla de ruedas. Por lo general, en las reglas iptables, se inserta una regla para caídas de paquetes con el estado de inválido en la cadena directa. Una combinación conjunta de estos factores conduce a una falta de mochila a través de dicho enrutador. En OpenWrt desde la caja de cambios net.netfilter.nf_conntrack_checksum=0 , a menudo no hay otros enrutadores, y esto no siempre se puede cambiar. Para que los NFQWS funcionen a través de un enrutador, debe establecer el valor SYSCTL especificado en 0. NFQWS en el enrutador en sí funcionará sin esta configuración, porque la chexumma de los paquetes creados localmente nunca se verifica. Si el enrutador tras otro NAT, por ejemplo, el proveedor, y no se pierde los paquetes no válidos, no puede hacer nada al respecto. Pero por lo general, los proveedores todavía se pierden Badsum. En algunos adaptadores/sudaderas/controladores, la descarga de RX-Checksum, los paquetes de Badsum se ven obligados a retirarse antes de recibir en el sistema operativo. En este caso, si se puede hacer algo, solo modifique el controlador, lo que parece ser extremadamente no trivial. Se estableció que algunos enrutadores sobre la base de MediaTek se comportan de esta manera. Los paquetes Badsum dejan el sistema operativo cliente, pero el enrutador no se ve en Br-Lan a través de TCPDUMP. Además, si NFQWS se realiza en el enrutador en sí, el bypass puede funcionar. Badsum normalmente deja la interfaz externa.badseq aumenta el número de secuencia TCP a un cierto valor, retirándolo de la ventana TCP. Dichos paquetes probablemente serán descartados por el nodo receptor, pero también DPI si se centra en los números de secuencia. Por defecto, el desplazamiento SEQ se selecciona -10000. La práctica ha demostrado que algunos DPI no se pierden el SEQ fuera de una ventana específica. Sin embargo, un desplazamiento tan pequeño puede causar problemas con una transmisión significativa y pérdida de paquetes. Si está utilizando --dpi-desync-any-protocol , es posible que deba instalar el incremento Badseq 0x80000000. Esto proporcionará una garantía confiable de que un paquete falso no acudirá en la ventana TCP en el servidor. También se observó que Badseq rompe la lógica de algún DPI durante el análisis HTTP, causando la congelación de la conexión. Además, en el mismo DPI TLS con Badseq funciona bien.TTL parecía ser la mejor opción, pero requiere un ajuste individual para cada proveedor. Si el DPI está más allá de los sitios locales del proveedor, entonces puede cortar el acceso a ellos. La situación se ve agravada por la presencia de TSPU en las carreteras, lo que obliga a TTL a hacer que TTL sea bastante alto, lo que aumenta el riesgo de descomposición de la falsa al servidor. Se requiere la lista de IP excluir, se llena manualmente. Junto con TTL, puede usar MD5SIG. Esto no estropeará nada, pero da una buena oportunidad de trabajar en los sitios a los que la bolsa "mala" llegará a TTL. Si no puede encontrar una solución automática, use el archivo zapret-hosts-user-exclude.txt . Algunos firmware de stock de los enrutadores arreglan el TTL saliente, sin desconectar esta opción, no funcionará a través de ellos. ¿Qué vale la pena elegir TTL? Encuentre el valor mínimo en el que todavía funciona el bypass. Este será el número de su DPI Hop.hopbyhop se refiere solo a IPv6. Se agregan hop-by-hop options de encabezado IPv6. En la versión de hopbyhop2 se agregan 2 heders, lo cual es una violación del estándar y se garantiza que la pila de protocolos en todos los sistemas operativos en todo el sistema operativo. Un HEDER HOP BY-HOP es aceptado por todo el sistema operativo, pero en algunos canales/proveedores, dichos paquetes pueden filtrarse y no alcanzar. El cálculo es que el DPI analizará el paquete con hop-by-hop, pero no llegará al destinatario de los filtros del proveedor, o será devuelto por el servidor, porque hay dos cabezas.datanoack envía falsificaciones con un indicador ACK TCP. Los servidores no son aceptados y DPI puede aceptar. Esta técnica puede romper NAT y no siempre funciona con iptables si se usa Masquarade, incluso del sistema local (casi siempre en los enrutadores IPv4). En los sistemas c iptables sin masquarade y nftables, funciona sin restricciones. Se descubrió experimentalmente que muchos proveedores NAT no descartan estos paquetes, por lo tanto, funciona incluso con la IP del proveedor interno. Pero no pasará Linux Nat, por lo que es muy probable que esta técnica no funcione detrás del enrutador de la casa, pero puede funcionar a partir de él. Puede funcionar a través de un enrutador si la conexión está conectada, y en el enrutador, la aceleración del hardware se enciende.autottl . La esencia del régimen en la definición automática de TTL, por lo que es casi seguro que pase DPI y no llega un poco al servidor. Se toman los valores básicos de TTL 64.128,255, se ve el paquete entrante (sí, es necesario dirigir el primer paquete entrante a NFQWS!). Se calcula la longitud de la pista, se toma delta (1 por defecto). Si TTL está fuera del rango (min, máximo - 3.20 de forma predeterminada), entonces se toman los valores de Min, los valores máximos para encajar en el rango. Si el TTL resultante es mayor que la longitud de la ruta, entonces el automatismo no funcionó y se toman los valores de TTL fijos para el ataque. La técnica le permite resolver la pregunta cuando toda la red está bloqueada por barreras (DPI, TSPU) siempre que sea posible, incluidas las carreteras. Pero potencialmente puede fallar. Por ejemplo, con la asimetría de un canal entrante y saliente a un servidor en particular. En algunos proveedores, esta técnica funcionará bien, en otros tomará más problemas que bien. En algún lugar puede tomar el sintonización de los parámetros. Es mejor usarlo con un limitador adicional. Los modos de distrito se pueden combinar en cualquier combinación. --dpi-desync-fooling toma muchos valores a través de una coma.
multisplit . Cortamos la solicitud a las posiciones indicadas en --dpi-desync-split-pos .multidisorder . Cortamos la solicitud a las posiciones indicadas en --dpi-desync-split-pos y enviamos el orden inverso.fakedsplit . Cortamos la solicitud de 2 partes, enmarcando cada parte con falsificaciones: falso de la primera parte, 1 parte, falso de la primera parte, falso de la segunda parte, 2 parte, falsa de la segunda partefakeddisorder . De manera similar a fakedsplit , solo en el orden inverso: falso de la segunda parte, 2 parte, falso de la segunda parte, falso de la primera parte, 1 parte, falsa 1 parte. El contenido de las falsificaciones en fakedsplit / fakeddisorder está determinado por el parámetro --dpi-desync-fakedsplit-pattern (predeterminado 0x00). Estas falsificaciones se toman del patrón con un desplazamiento correspondiente al desplazamiento de las piezas referidas. Los tamaños de falsificaciones corresponden a las longitudes de las piezas enviadas. El propósito de estos modos es complicar la identificación de datos originales entre falsificaciones.
Para determinar las posiciones de corte, se utilizan marcadores.
Posiciones relativas:
--methodeol . Entonces la posición puede ser 1 o 2. Un ejemplo de una lista de marcadores: 100,midsld,sniext+1,endhost-2,-10 .
Al romper el paquete, lo primero es los marcadores de resolución: encontrar todas estas posiciones relativas y el uso de desplazamientos. Si una posición relativa está ausente en el protocolo actual, tales posiciones no se aplican ni se descartan. Luego hay una normalización de las posiciones con respecto al desplazamiento del paquete actual en el grupo de paquetes (solicitudes de paquete múltiple TLS con Kyber, por ejemplo). Todas las posiciones que se extienden más allá de los límites del paquete actual se descartan. El resto se clasifica en un aumento en un aumento en la duplicación. En las variantes de multisplit y multidisorder si no queda una sola posición, la desglose no se produce.
Las opciones de fakedsplit y fakeddisorder usan solo una posición dividida. Su búsqueda entre la lista --dpi-desync-split-pos se lleva a cabo de manera especial. Primero, se verifican todos los marcadores relativos. Si se encuentra uno adecuado entre ellos, se usa. De lo contrario, se verifican todos los marcadores absolutos. Si no se encuentra nada entre ellos, se aplica la posición 1.
Por ejemplo, puede escribir --dpi-desync-split-pos=method+2,midsld,5 . Si el protocolo HTTP, la descomposición estará en la posición del method+2 . Si el protocolo TLS está en midsld . Si el protocolo es desconocido e inclusivo --dpi-desync-any-protocol , la desglose estará en la posición 5. Para hacer que todo sea más inequívoco, puede usar diferentes perfiles para diferentes protocolos e indicar solo una posición que definitivamente está en este protocolo.
seqovl agrega seqovl al comienzo de uno de los segmentos TCP con el número de secuencia desplazado en seqovl . Para split , al comienzo del primer segmento, para disorder , al comienzo del penúltimo segmento (el segundo en el original siguiente orden).
En el caso de split el cálculo es sobre el hecho de que la referencia anterior, si era así, ya ha ingresado al coquet de la aplicación del servidor, por lo que la nueva que ha llegado solo está parcialmente dentro de la ventana actual (en la ventana). En el frente, la parte falsa se descarta, y el resto del uno contiene el original y comienza con el comienzo de la ventana, por lo que ingresa al enchufe. La aplicación del servidor recibe todo lo que el cliente realmente envía, descartando la parte falsa fuera de la ventana. Pero DPI no puede entender esto, por lo que tiene una secuencia desinchronización. Es imperativo que el primer segmento con seqovl no exceda la longitud de MTU. Esta situación se reconoce automáticamente en Linux, y seqovl se cancela. En otros sistemas, la situación no se reconoce, y esto conducirá a un desglose de la conexión. Por lo tanto, elija la primera posición dividida y seqovl para que MTU no se exceda en ningún caso. De lo contrario, la espiritualización puede no funcionar o funcionar al azar.
Para la superposición disorder , va a la penúltima parte del paquete. Para simplificar, asumiremos que la división entra en 2 partes, estarán en orden "2 1" con el orden original "1 2". Es necesario que seqovl sea menor que la posición de la primera división, de lo contrario, todo lo que se envía se transferirá al enchufe inmediatamente, incluida la falsificación, rompiendo el protocolo del nivel aplicado. El programa detecta fácilmente esta situación, y seqovl se cancela. Un aumento en el tamaño del paquete es imposible en principio. Sujeto a la condición de la segunda parte del paquete está completamente en la ventana, por lo que el sistema operativo del servidor lo acepta por completo, incluida la falsa. Pero dado que la parte inicial de los datos de 1 paquete de 1 paquete aún no se ha adoptado, los datos falsos y reales permanecen en la memoria del núcleo sin ir a la aplicación del servidor. Tan pronto como llegue la primera parte del paquete, reescribe la parte falsa en la memoria del núcleo. El núcleo recibe datos de 1 y 2 partes, por lo que la aplicación se envía al socket de la aplicación. Tal es el comportamiento de todo unix OS, excepto Solaris, para dejar los últimos datos adoptados. Windows deja datos antiguos, por lo que el desorden con SEQOVL conducirá a refuerzos cuando se trabaje con los servidores de Windows. Solaris está casi muerto, hay muy pocos servidores de Windows. Puedes usar sábanas si es necesario. El método le permite hacer sin engañar y TTL. Las falsificaciones se mezclan con datos reales. fakedsplit/fakeddisorder todavía agregan falsificaciones separadas adicionales.
seqovl en la versión split solo puede ser un valor positivo absoluto, ya que solo se usa en el primer paquete. En la versión disorder , todas las opciones de marcadores están permitidos. Se normalizan automáticamente al paquete actual de la serie. Puedes tejer en midsld y hacer SEQOVL en midsld-1 .
hopbyhop , destopt e ipfrag1 modos decronización (no para confundirse con la gente!) Se relacionan solo con IPv6 y consiste en agregar las opciones, destination options o fragment hop-by-hop options en todos los paquetes que caen bajo desinchonización. Aquí es necesario comprender que la adición de un encabezado aumenta el tamaño del paquete, por lo tanto, no se puede aplicar a paquetes del tamaño máximo. Este es el caso cuando se transmiten mensajes grandes. Si es imposible enviar el paquete, el espíritu del espíritu será cancelado, el paquete será expulsado en el original. El cálculo es que el DPI verá 0 en el siguiente campo de encabezado del título principal ipv6 y no saltará en la extensión Heders en busca de un encabezado de transporte. Por lo tanto, no entenderá que es TCP o UDP, y se perderá un paquete sin análisis. Quizás un DPI lo comprará. Se puede combinar con cualquier modos de la segunda fase, excepto ipfrag1+ipfrag2 . Por ejemplo, hopbyhop,multisplit significa dividir el paquete TCP en varios segmentos, agregue lúpulo por salto a cada uno de ellos. Con hopbyhop,ipfrag2 la secuencia del encabezado será: ipv6,hop-by-hop , fragment , tcp/udp . El modo ipfrag1 no siempre funciona sin una preparación especial. Consulte la sección IP фрагментация .
En el parámetro DPI-DESYNC, puede especificar hasta 3 modos a través de una coma.
synack , syndata , --wsize , --wssize . Los filtros en HostList no operan en esta fase.fake , rst , rstack .fakedsplit o ipfrag2 ).Los modos requieren indicación en el orden de aumentar los números de fase.
Hay DPI que analizan las respuestas del servidor, en particular, un certificado de Serverhello, donde se registran los dominios. La confirmación de la entrega de ClientHello es un paquete de servidor ACK con secuencia ACK, correspondiente a la longitud de ClientHello+1. En la versión del trastorno, la confirmación parcial (SACK) generalmente es primero, luego un ACK completo. Si en lugar de ACK o Sack hay un paquete RST con un retraso mínimo, entonces DPI lo corta en la etapa de su solicitud. Si RST va después de un ACK completo después de un retraso igual al ping al servidor, entonces el DPI probablemente reacciona a la respuesta del servidor. DPI puede retrasarse detrás de la transmisión si Clienthello lo satisface y no verificó Serverhello. Entonces tienes suerte. La opción falsa puede funcionar. Si no se queda atrás y verifica obstinadamente Serverhello, entonces puede intentar obligar al servidor a enviar servidorhello en partes a través del parámetro - -wssize (ver Conntrack). Si esto no ayuda, es poco probable que algo haga esto sin la ayuda del servidor. La mejor solución es habilitar el soporte TLS 1.3 en el servidor. En él, el certificado del servidor se transmite en forma cifrada. Esta es una recomendación para todos los administradores de sitios bloqueados. Encienda TLS 1.3. Entonces dará más oportunidades para superar DPI.
En la documentación de Ginebra, esto se llama "TCB Turnaround". Un intento de engañar a DPI con respecto a los roles de un cliente y servidor.
Dado que el modo viola el trabajo de NAT, el equipo solo puede funcionar si no hay NAT entre el dispositivo de ataque y el DPI. El ataque no funcionará a través de un enrutador Nat, pero puede funcionar a partir de él. Para implementar un ataque al tráfico que pasa, se requieren un esquema NFTable y PostNAT.
Todo es simple aquí. Los datos se agregan al paquete SYN. Todo el sistema operativo los ignora si no se usa TCP Fast Open (TFO), y DPI puede percibir sin comprender comer allí o no. Las conexiones originales con TFO no tocan, ya que esto definitivamente las romperá. Sin un parámetro aclaratorio, se agregan 16 bytes cero.
Desde el interior de la VM de Virtualbox y VMware en NAT, muchas técnicas de paquetes NFQWS no funcionan en modo NAT. TTL se reemplaza por la fuerza, los paquetes falsos no pasan. Debe configurar la red en modo puente.
NFQWS está equipado con una implementación limitada de los compuestos TCP de seguimiento. Se enciende para la implementación de algunos métodos para contrarrestar el DPI. Connetrack puede monitorear la fase de conexión: Syn, establecido, FIN, el número de paquetes en cada dirección, números de secuencia. Connetrack puede "alimentarse" con ambas bolsas de una vía o solo en una dirección. La conexión ingresa a la tabla cuando encuentra paquetes con banderas establecidas por SYN o SYN, ACK. Por lo tanto, si necesita Conntrack, en las reglas de redirección de iptables, la conexión debe ir a NFQWS desde el primer paquete, aunque luego puede romper el filtro ConnyBytes. Para UDP, el iniciador de entrar en la mesa es el primer paquete UDP. También determina la dirección del flujo. Se cree que el primer paquete UDP proviene del cliente al servidor. A continuación, todos los paquetes con src_ip,src_port,dst_ip,dst_port coincidentes pertenecen a este flujo antes del vencimiento del tiempo de inactividad. Conntrack es simple, no se escribió teniendo en cuenta todo tipo de ataques en la conexión, no verifica los paquetes para la validez de los números de secuencia o el chekumm. Su tarea es solo para mantener las necesidades de NFQWS, generalmente se alimenta solo en el tráfico saliente, por lo tanto, es insensible a las sustituciones de la red externa. La conexión se elimina de la tabla tan pronto como la necesidad de rastrearla o en un tiempo de comunicación inactivo desaparezca. Hay tiempos de espera separados para cada fase de la conexión. El parámetro los puede cambiar --ctrack-timeouts .
--wssize le permite cambiar el tamaño de la ventana TCP para el servidor desde el cliente para que envíe las siguientes respuestas a las piezas. Para que esto afecte todo el sistema operativo del servidor, es necesario cambiar el tamaño de la ventana en cada paquete que proviene del cliente antes de enviar el mensaje, la respuesta a la que debe dividirse (por ejemplo, TLS Clienthello). Por eso es necesario saber cuándo detenerse. Si no se detiene e instala un WSSize bajo todo el tiempo, la velocidad caerá catastróficamente. En Linux, esto se puede detener a través de Connbytes, pero en los sistemas BSD no existe tal posibilidad. En el caso de HTTP (s), nos detenemos inmediatamente después de enviar la primera solicitud HTTP o TLS Clienthello. Si está tratando con no HTTP (s), necesitará un parámetro --wssize-cutoff . Establece el límite del cual se detiene la acción WSSIZE. Prefijo D Antes del número significa solo paquetes con carga útil de datos, prefijo S - Número de secuencia relativa, en otras palabras, el número de bytes transferidos por el cliente + 1. Si el paquete con la solicitud HTTP o TLS ClientLol, la acción de WSize se detiene de inmediato, sin esperar a WSSIZE -CUTOFF. Si su protocolo es propenso a una inacción larga, la fase establecida se incrementa a través --ctrack-timeouts . El valor predeterminado es bajo, solo 5 minutos. No olvide que NFQWS se alimenta de paquetes al llegar a él. Si limita la ingesta de paquetes a través de Connbytes, entonces la tabla puede permanecer colgando compuestos en la fase establecida, que se caerá solo por Timout. Para diagnosticar Conntrack, envíe la señal SIGUSR1 a NFQWS: killall -SIGUSR1 nfqws . La tabla actual será mostrada por NFQWS en STDOUT.
Por lo general, en el paquete SYN, el cliente se refiere, además del tamaño de la ventana, también scaling factor extensión TCP. El factor de escala es el grado de Deuce, que se multiplica por el tamaño de la ventana: 0 => 1, 1 => 2, 2 => 4, ..., 8 => 256, ... en el parámetro del factor de escala WSIZE se indica a través del colon. El factor de escala solo puede disminuir, el aumento se bloquea para evitar exceder el tamaño de la ventana del servidor. Para forzar el servidor a la fragmentación de Serverhello, para evitar el borde del nombre del servidor del certificado del servidor en DPI, es mejor usar --wssize=1:6 . La regla principal es hacer scale_factor tanto como sea posible para que después de la restauración del tamaño de la ventana, el tamaño final de la ventana se vuelva como sea posible. Si hace 64: 0, será muy lento. Por otro lado, es imposible permitir que la respuesta del servidor se vuelva lo suficientemente grande como para que DPI encuentre lo deseado allí.
--wssize no funciona en perfiles con listas anfitrionas, ya que actúa desde el comienzo de la conexión, cuando todavía es imposible decidir ingresar a la hoja. Sin embargo, el perfil con Auto Hostlist puede contener - -WSIZE. --wssize puede ralentizar la velocidad y/o aumentar el tiempo de respuesta de los sitios, por lo que si hay otros métodos de trabajo para evitar DPI, es mejor usarlos.
--dpi-desync-cutoff le permite establecer el límite, cuando se alcanza el DPI-desync. Los prefijos N, D, S están disponibles por analogía c --wssize-cutoff . Útil junto con --dpi-desync-any-protocol=1 . En los compuestos propensos a la inacción, los tiempos de espera de Conntrack deben cambiarse. Si la conexión cayó de Conntrack y la opción se establece --dpi-desync-cutoff , dpi desync no se aplicará.
NFQWS admite el reensamblaje de algunos tipos de solicitudes. Por el momento, este es TLS y Quic Clienthello. Son largos si incluye la criptografía posterior al quantum de TLS-Kyber en Chrome, y generalmente ocupa 2 o 3 paquetes. Kyber se enciende de forma predeterminada, comenzando con Chromium 124. El cromo se aleatoriza con TLS FingerPrinnt. SNI puede ser tanto al principio como al final, es decir, entrar en cualquier paquete. El DPI con estado generalmente vuelve a armar la solicitud por completo, y solo entonces toma una decisión sobre el bloqueo. In the case of obtaining a TLS or QUIC package with a partial Clienthello, the assembly process begins, and the packages are delayed and are not sent until its end. At the end of the assembly, the package passes through the desynchronization on the basis of the fully collected Clienthello. In case of any error during the assembly process, the detained packages are immediately sent to the network, and the desinchronization is canceled.
Есть специальная поддержка всех вариантов tcp сплита для многосегментного TLS. Если указать позицию сплита больше длины первого пакета, то разбивка происходит не обязательно первого пакета, а того, на который пришлась итоговая позиция. Если, допустим, клиент послал TLS ClientHello длиной 2000, SNI начинается с 1700, и заданы опции fake,multisplit , то перед первым пакетом идет fake, затем первый пакет в оригинале, а последний пакет разбивается на 2 сегмента. В итоге имеем фейк в начале и 3 реальных сегмента.
Атаки на udp более ограничены в возможностях. udp нельзя фрагментировать иначе, чем на уровне ip. Для UDP действуют только режимы десинхронизации fake , hopbyhop , destopt , ipfrag1 , ipfrag2 , udplen , tamper . Возможно сочетание fake , hopbyhop , destopt с ipfrag2 , fake , fakeknown с udplen и tamper. udplen увеличивает размер udp пакета на указанное в --dpi-desync-udplen-increment количество байтов. Паддинг заполняется нулями по умолчанию, но можно задать свой паттерн. Предназначено для обмана DPI, ориентирующегося на размеры пакетов. Может сработать, если пользовательский протокол не привязан жестко к размеру udp пейлоада. Режим tamper означает модификацию пакетов известных протоколов особенным для протокола образом. На текущий момент работает только с DHT. Поддерживается определение пакетов QUIC Initial с расшифровкой содержимого и имени хоста, то есть параметр --hostlist будет работать. Определяются пакеты wireguard handshake initiation и DHT (начинается с 'd1', кончается 'e'). Для десинхронизации других протоколов обязательно указывать --dpi-desync-any-protocol . Реализован conntrack для udp. Можно пользоваться --dpi-desync-cutoff. Таймаут conntrack для udp можно изменить 4-м параметром в --ctrack-timeouts . Атака fake полезна только для stateful DPI, она бесполезна для анализа на уровне отдельных пакетов. По умолчанию fake наполнение - 64 нуля. Можно указать файл в --dpi-desync-fake-unknown-udp .
Современная сеть практически не пропускает фрагментированные tcp на уровне ip. На udp с этим дело получше, поскольку некоторые udp протоколы могут опираться на этот механизм (IKE старых версий). Однако, кое-где бывает, что режут и фрагментированный udp. Роутеры на базе linux могут самопроизвольно собирать или перефрагментировать пакеты. Позиция фрагментации задается отдельно для tcp и udp. По умолчанию 24 и 8 соответственно, должна быть кратна 8. Смещение считается с транспортного заголовка.
Существует ряд моментов вокруг работы с фрагментами на Linux, без понимания которых может ничего не получиться.
ipv4 : Linux дает отсылать ipv4 фрагменты, но стандартные настройки iptables в цепочке OUTPUT могут вызывать ошибки отправки.
ipv6 : Нет способа для приложения гарантированно отослать фрагменты без дефрагментации в conntrack. На разных системах получается по-разному. Где-то нормально уходят, где-то пакеты дефрагментируются. Для ядер <4.16 похоже, что нет иного способа решить эту проблему, кроме как выгрузить модуль nf_conntrack , который подтягивает зависимость nf_defrag_ipv6 . Он то как раз и выполняет дефрагментацию. Для ядер 4.16+ ситуация чуть лучше. Из дефрагментации исключаются пакеты в состоянии NOTRACK. Чтобы не загромождать описание, смотрите пример решения этой проблемы в blockcheck.sh .
Иногда требуется подгружать модуль ip6table_raw с параметром raw_before_defrag=1 . В openwrt параметры модулей указываются через пробел после их названий в файлах /etc/modules.d . В традиционных системах посмотрите используется ли iptables-legacy или iptables-nft . Если legacy, то нужно создать файл /etc/modprobe.d/ip6table_raw.conf с содержимым :
options ip6table_raw raw_before_defrag=1
В некоторых традиционных дистрибутивах можно изменить текущий ip6tables через : update-alternatives --config ip6tables Если вы хотите оставаться на iptables-nft, вам придется пересобрать патченную версию. Патч совсем небольшой. В nft.c найдите фрагмент:
{
.name = "PREROUTING",
.type = "filter",
.prio = -300, /* NF_IP_PRI_RAW */
.hook = NF_INET_PRE_ROUTING,
},
{
.name = "OUTPUT",
.type = "filter",
.prio = -300, /* NF_IP_PRI_RAW */
.hook = NF_INET_LOCAL_OUT,
},
и замените везде -300 на -450.
Это нужно сделать вручную, никакой автоматики в blockcheck.sh нет.
Либо можно раз и навсегда избавиться от этой проблемы, используя nftables . Там можно создать netfilter hook с любым приоритетом. Используйте приоритет -401 и ниже.
При использовании iptables и NAT, похоже, что нет способа прицепить обработчик очереди после NAT. Пакет попадает в nfqws с source адресом внутренней сети, затем фрагментируется и уже не обрабатывается NAT. Так и уходит во внешюю сеть с src ip 192.168.xx Следовательно, метод не срабатывает. Видимо единственный рабочий метод - отказаться от iptables и использовать nftables. Хук должен быть с приоритетом 101 или выше.
nfqws способен по-разному реагировать на различные запросы и применять разные стратегии дурения. Это реализовано посредством поддержки множества профилей дурения. Профили разделяются в командной строке параметром --new . Первый профиль создается автоматически. Для него не нужно --new . Каждый профиль имеет фильтр. По умолчанию он пуст, то есть профиль удовлетворяет любым условиям. Фильтр может содержать жесткие параметры: версия ip протокола, ipset и порты tcp/udp. Они всегда однозначно идентифицируются даже на нулевой фазе десинхронизации, когда еще хост и L7 неизвестны. В качестве мягкого фильтра могут выступать хост-листы и протокол прикладного уровня (l7). L7 протокол становится известен обычно после первого пакета с данными. При поступлении запроса идет проверка профилей в порядке от первого до последнего до достижения первого совпадения с фильтром. Жесткие параметры фильтра сверяются первыми. При несовпадении идет сразу же переход к следующему профилю. Если какой-то профиль удовлетворяет жесткому фильтру и L7 фильтру и содержит авто-хостлист, он выбирается сразу. Если профиль удовлетворяет жесткому фильтру и L7 фильтру, для него задан хостлист, и у нас еще нет имени хоста, идет переход к следующему профилю. В противном случае идет проверка по хостлистам этого профиля. Если имя хоста удовлетворяет листам, выбирается этот профиль. Иначе идет переход к следующему. Может так случиться, что до получения имени хоста или узнавания L7 протокола соединение идет по одному профилю, а при выяснении этих параметров профиль меняется на лету. Это может произойти даже дважды - при выяснении L7 и имени хоста. Чаще всего это выяснение совмещается в одно действие, поскольку по одному пакету как правило узнается и L7, и хост. Поэтому если у вас есть параметры дурения нулевой фазы, тщательно продумывайте что может произойти при переключении стратегии. Смотрите debug log, чтобы лучше понять что делает nfqws. Нумерация профилей идет с 1 до N. Последним в цепочке создается пустой профиль с номером 0. Он используется, когда никакие условия фильтров не совпали.
Importante
Множественные стратегии создавались только для случаев, когда невозможно обьединить имеющиеся стратегии для разных ресурсов. Копирование стратегий из blockcheck для разных сайтов во множество профилей без понимания как они работают приведет к нагромождению параметров, которые все равно не покроют все возможные заблокированные ресурсы. Вы только увязните в этой каше.
Importante
user-mode реализация ipset создавалась не как удобная замена *nix версии, реализованной в ядре. Вариант в ядре работает гораздо эффективнее. Это создавалось для систем без подержки ipset в ядре. Конкретно - Windows и ядра Linux, собранные без nftables и ipset модулей ядра. Например, в android нет ipset.
iptables для задействования атаки на первые пакеты данных в tcp соединении :
iptables -t mangle -I POSTROUTING -o <внешний_интерфейс> -p tcp -m multiport --dports 80,443 -m connbytes --connbytes-dir=original --connbytes-mode=packets --connbytes 1:6 -m mark ! --mark 0x40000000/0x40000000 -j NFQUEUE --queue-num 200 --queue-bypass
Этот вариант применяем, когда DPI не следит за всеми запросами http внутри keep-alive сессии. Если следит, направляем только первый пакет от https и все пакеты от http :
iptables -t mangle -I POSTROUTING -o <внешний_интерфейс> -p tcp --dport 443 -m connbytes --connbytes-dir=original --connbytes-mode=packets --connbytes 1:6 -m mark ! --mark 0x40000000/0x40000000 -j NFQUEUE --queue-num 200 --queue-bypass
iptables -t mangle -I POSTROUTING -o <внешний_интерфейс> -p tcp --dport 80 -m mark ! --mark 0x40000000/0x40000000 -j NFQUEUE --queue-num 200 --queue-bypass
mark нужен, чтобы сгенерированный поддельный пакет не попал опять к нам на обработку. nfqws выставляет fwmark при его отсылке. хотя nfqws способен самостоятельно различать помеченные пакеты, фильтр в iptables по mark нужен при использовании connbytes, чтобы не допустить изменения порядка следования пакетов. Процессинг очереди - процесс отложенный. Если ядро имеет пакеты на отсылку вне очереди - оно их отправляет незамедлительно. Изменение правильного порядка следования пакетов при десинхронизации ломает всю идею. Так же были замечены дедлоки при достаточно большой отсылке пакетов из nfqws и отсутствии mark фильтра. Процесс может зависнуть. Поэтому наличие фильтра по mark в ip/nf tables можно считать обязательным.
Почему --connbytes 1:6 :
Для режима autottl необходимо перенаправление входящего SYN,ACK пакета или первого пакета соединения (что обычно есть тоже самое). Для режима autohostlist необходимы входящие RST и http redirect. Можно построить фильтр на tcp flags для выделения SYN,ACK и модуле u32 для поиска характерных паттернов http redirect, но проще использовать connbytes для выделения нескольких начальных входящих пакетов.
iptables -t mangle -I PREROUTING -i <внешний интерфейс> -p tcp -m multiport --sports 80,443 -m connbytes --connbytes-dir=reply --connbytes-mode=packets --connbytes 1:3 -m mark ! --mark 0x40000000/0x40000000 -j NFQUEUE --queue-num 200 --queue-bypass
Для quic :
iptables -t mangle -I POSTROUTING -o <внешний_интерфейс> -p udp --dport 443 -m connbytes --connbytes-dir=original --connbytes-mode=packets --connbytes 1:6 -m mark ! --mark 0x40000000/0x40000000 -j NFQUEUE --queue-num 200 --queue-bypass
6 пакетов берется, чтобы покрыть случаи возможных ретрансмиссий quic initial в случае плохой связи или если сервер плохо себя чувствует, а приложение настаивает именно на quic, не переходя на tcp. А так же для работы autohostlist по quic. Однако, autohostlist для quic не рекомендуется.
Можно начать с базовой конфигурации.
IFACE_WAN=wan
nft create table inet ztest
nft add chain inet ztest post "{type filter hook postrouting priority mangle;}"
nft add rule inet ztest post oifname $IFACE_WAN meta mark and 0x40000000 == 0 tcp dport "{80,443}" ct original packets 1-6 queue num 200 bypass
nft add rule inet ztest post oifname $IFACE_WAN meta mark and 0x40000000 == 0 udp dport 443 ct original packets 1-6 queue num 200 bypass
# auto hostlist with avoiding wrong ACK numbers in RST,ACK packets sent by russian DPI
sysctl net.netfilter.nf_conntrack_tcp_be_liberal=1
nft add chain inet ztest pre "{type filter hook prerouting priority filter;}"
nft add rule inet ztest pre iifname $IFACE_WAN tcp sport "{80,443}" ct reply packets 1-3 queue num 200 bypass
Для задействования IP фрагментации и datanoack на проходящие пакеты требуется особая конфигурация цепочек, перенаправляющая пакеты после NAT. В скриптах zapret эта схема называется POSTNAT , и она возможна только на nftables. Сгенерированные nfqws пакеты требуется на раннем этапе помечать как notrack , чтобы они не были испорчены NAT.
IFACE_WAN=wan
nft create table inet ztest
nft add chain inet ztest postnat "{type filter hook postrouting priority srcnat+1;}"
nft add rule inet ztest postnat oifname $IFACE_WAN meta mark and 0x40000000 == 0 tcp dport "{80,443}" ct original packets 1-6 queue num 200 bypass
nft add rule inet ztest postnat oifname $IFACE_WAN meta mark and 0x40000000 == 0 udp dport 443 ct original packets 1-6 queue num 200 bypass
nft add chain inet ztest predefrag "{type filter hook output priority -401;}"
nft add rule inet ztest predefrag "mark & 0x40000000 != 0x00000000 notrack"
Удаление тестовой таблицы :
nft delete table inet ztest
Если ваше устройство поддерживает аппаратное ускорение (flow offloading, hardware nat, hardware acceleration), то iptables могут не работать. При включенном offloading пакет не проходит по обычному пути netfilter. Необходимо или его отключить, или выборочно им управлять.
В новых ядрах присутствует software flow offloading (SFO). Пакеты, проходящие через SFO, так же проходят мимо большей части механизмов iptables. При включенном SFO работает DNAT/REDIRECT (tpws). Эти соединения исключаются из offloading. Однако, остальные соединения идут через SFO, потому NFQUEUE будет срабатывать только до помещения соединения в flowtable. Практически это означает, что почти весь функционал nfqws работать не будет. Offload включается через специальный target в iptables FLOWOFFLOAD . Не обязательно пропускать весь трафик через offload. Можно исключить из offload соединения, которые должны попасть на tpws или nfqws. openwrt не предусматривает выборочного управления offload. Поэтому скрипты zapret поддерживают свою систему выборочного управления offload в openwrt.
iptables target FLOWOFFLOAD - это проприетарное изобретение openwrt. Управление offload в nftables реализовано в базовом ядре linux без патчей.
tpws - это transparent proxy.
@<config_file>|$<config_file> ; читать конфигурацию из файла. опция должна быть первой. остальные опции игнорируются.
--debug=0|1|2|syslog|@<filename> ; 0,1,2 = логирование на косоль : 0=тихо, 1(default)=подробно, 2=отладка.
--debug-level=0|1|2 ; указать уровень логирования для syslog и @<filename>
--dry-run ; проверить опции командной строки и выйти. код 0 - успешная проверка.
--daemon ; демонизировать прогу
--pidfile=<file> ; сохранить PID в файл
--user=<username> ; менять uid процесса
--uid=uid[:gid] ; менять uid процесса
--bind-addr ; на каком адресе слушать. может быть ipv4 или ipv6 адрес
; если указан ipv6 link local, то требуется указать с какого он интерфейса : fe80::1%br-lan
--bind-linklocal=no|unwanted|prefer|force ; no : биндаться только на global ipv6
; unwanted (default) : предпочтительно global, если нет - LL
; prefer : предпочтительно LL, если нет - global
; force : биндаться только на LL
--bind-iface4=<iface> ; слушать на первом ipv4 интерфейса iface
--bind-iface6=<iface> ; слушать на первом ipv6 интерфейса iface
--bind-wait-ifup=<sec> ; ждать до N секунд появления и поднятия интерфейса
--bind-wait-ip=<sec> ; ждать до N секунд получения IP адреса (если задан --bind-wait-ifup - время идет после поднятия интерфейса)
--bind-wait-ip-linklocal=<sec>
; имеет смысл только при задании --bind-wait-ip
; --bind-linklocal=unwanted : согласиться на LL после N секунд
; --bind-linklocal=prefer : согласиться на global address после N секунд
--bind-wait-only ; подождать все бинды и выйти. результат 0 в случае успеха, иначе не 0.
--connect-bind-addr ; с какого адреса подключаться во внешнюю сеть. может быть ipv4 или ipv6 адрес
; если указан ipv6 link local, то требуется указать с какого он интерфейса : fe80::1%br-lan
; опция может повторяться для v4 и v6 адресов
; опция не отменяет правил маршрутизации ! выбор интерфейса определяется лишь правилами маршрутизации, кроме случая v6 link local.
--socks ; вместо прозрачного прокси реализовать socks4/5 proxy
--no-resolve ; запретить ресолвинг имен через socks5
--resolve-threads ; количество потоков ресолвера
--port=<port> ; на каком порту слушать
--maxconn=<max_connections> ; максимальное количество соединений от клиентов к прокси
--maxfiles=<max_open_files> ; макс количество файловых дескрипторов (setrlimit). мин требование (X*connections+16), где X=6 в tcp proxy mode, X=4 в режиме тамперинга.
; стоит сделать запас с коэффициентом как минимум 1.5. по умолчанию maxfiles (X*connections)*1.5+16
--max-orphan-time=<sec> ; если вы запускаете через tpws торрент-клиент с множеством раздач, он пытается установить очень много исходящих соединений,
; большая часть из которых отваливается по таймауту (юзера сидят за NAT, firewall, ...)
; установление соединения в linux может длиться очень долго. локальный конец отвалился, перед этим послав блок данных,
; tpws ждет подключения удаленного конца, чтобы отослать ему этот блок, и зависает надолго.
; настройка позволяет сбрасывать такие подключения через N секунд, теряя блок данных. по умолчанию 5 сек. 0 означает отключить функцию
; эта функция не действует на успешно подключенные ранее соединения
--local-rcvbuf=<bytes> ; SO_RCVBUF для соединений client-proxy
--local-sndbuf=<bytes> ; SO_SNDBUF для соединений client-proxy
--remote-rcvbuf=<bytes> ; SO_RCVBUF для соединений proxy-target
--remote-sndbuf=<bytes> ; SO_SNDBUF для соединений proxy-target
--nosplice ; не использовать splice на linux системах
--skip-nodelay ; не устанавливать в исходящих соединения TCP_NODELAY. несовместимо со split.
--local-tcp-user-timeout=<seconds> ; таймаут соединений client-proxy (по умолчанию : 10 сек, 0 = оставить системное значение)
--remote-tcp-user-timeout=<seconds> ; таймаут соединений proxy-target (по умолчанию : 20 сек, 0 = оставить системное значение)
--fix-seg=<int> ; исправлять неудачи tcp сегментации ценой задержек для всех клиентов и замедления. ждать до N мс. по умолчанию 30 мс.
--split-pos=N|-N|marker+N|marker-N ; список через запятую маркеров для tcp сегментации
--split-any-protocol ; применять сегментацию к любым пакетам. по умолчанию - только к известным протоколам (http, TLS)
--disorder[=http|tls] ; путем манипуляций с сокетом вынуждает отправлять первым второй сегмент разделенного запроса
--oob[=http|tls] ; отправить байт out-of-band data (OOB) в конце первой части сплита
--oob-data=<char>|0xHEX ; переопределить байт OOB. по умолчанию 0x00.
--hostcase ; менять регистр заголовка "Host:". по умолчанию на "host:".
--hostspell=HoST ; точное написание заголовка Host (можно "HOST" или "HoSt"). автоматом включает --hostcase
--hostdot ; добавление точки после имени хоста : "Host: kinozal.tv."
--hosttab ; добавление табуляции после имени хоста : "Host: kinozal.tvt"
--hostnospace ; убрать пробел после "Host:"
--hostpad=<bytes> ; добавить паддинг-хедеров общей длиной <bytes> перед Host:
--domcase ; домен после Host: сделать таким : TeSt.cOm
--methodspace ; добавить пробел после метода : "GET /" => "GET /"
--methodeol ; добавить перевод строки перед методом : "GET /" => "rnGET /"
--unixeol ; конвертировать 0D0A в 0A и использовать везде 0A
--tlsrec=N|-N|marker+N|marker-N ; разбивка TLS ClientHello на 2 TLS records на указанной позиции. Минимальное смещение - 6.
--mss=<int> ; установить MSS для клиента. может заставить сервер разбивать ответы, но существенно снижает скорость
--tamper-start=[n]<pos> ; начинать дурение только с указанной байтовой позиции или номера блока исходяшего потока (считается позиция начала принятого блока)
--tamper-cutoff=[n]<pos> ; закончить дурение на указанной байтовой позиции или номере блока исходящего потока (считается позиция начала принятого блока)
--hostlist=<filename> ; действовать только над доменами, входящими в список из filename. поддомены автоматически учитываются.
; в файле должен быть хост на каждой строке.
; список читается при старте и хранится в памяти в виде иерархической структуры для быстрого поиска.
; при изменении времени модификации файла он перечитывается автоматически по необходимости
; список может быть запакован в gzip. формат автоматически распознается и разжимается
; списков может быть множество. пустой общий лист = его отсутствие
; хосты извлекаются из Host: хедера обычных http запросов и из SNI в TLS ClientHello.
--hostlist-domains=<domain_list> ; фиксированный список доменов через зяпятую. можно использовать # в начале для комментирования отдельных доменов.
--hostlist-exclude=<filename> ; не применять дурение к доменам из листа. может быть множество листов. схема аналогична include листам.
--hostlist-exclude-domains=<domain_list> ; фиксированный список доменов через зяпятую. можно использовать # в начале для комментирования отдельных доменов.
--hostlist-auto=<filename> ; обнаруживать автоматически блокировки и заполнять автоматический hostlist (требует перенаправления входящего трафика)
--hostlist-auto-fail-threshold=<int> ; сколько раз нужно обнаружить ситуацию, похожую на блокировку, чтобы добавить хост в лист (по умолчанию: 3)
--hostlist-auto-fail-time=<int> ; все эти ситуации должны быть в пределах указанного количества секунд (по умолчанию: 60)
--hostlist-auto-debug=<logfile> ; лог положительных решений по autohostlist. позволяет разобраться почему там появляются хосты.
--new ; начало новой стратегии (новый профиль)
--skip ; не использовать этот профиль . полезно для временной деактивации профиля без удаления параметров.
--filter-l3=ipv4|ipv6 ; фильтр версии ip для текущей стратегии
--filter-tcp=[~]port1[-port2]|* ; фильтр портов tcp для текущей стратегии. ~ означает инверсию. поддерживается список через запятую.
--filter-l7=[http|tls|quic|wireguard|dht|unknown] ; фильтр протокола L6-L7. поддерживается несколько значений через запятую.
--ipset=<filename> ; включающий ip list. на каждой строчке ip или cidr ipv4 или ipv6. поддерживается множество листов и gzip. перечитка автоматическая.
--ipset-ip=<ip_list> ; фиксированный список подсетей через запятую. можно использовать # в начале для комментирования отдельных подсетей.
--ipset-exclude=<filename> ; исключающий ip list. на каждой строчке ip или cidr ipv4 или ipv6. поддерживается множество листов и gzip. перечитка автоматическая.
--ipset-exclude-ip=<ip_list> ; фиксированный список подсетей через запятую. можно использовать # в начале для комментирования отдельных подсетей.
tpws, как и nfqws, поддерживает множественную сегментацию запросов. Сплит позиции задаются в --split-pos . Указываются маркеры через запятую. Описание маркеров см в разделе nfqws.
На прикладном уровне в общем случае нет гарантированного средства заставить ядро выплюнуть блок данных, порезанным в определенном месте. ОС держит буфер отсылки (SNDBUF) у каждого сокета. Если у сокета включена опция TCP_NODELAY и буфер пуст, то каждый send приводит к отсылке отдельного ip пакета или группы пакетов, если блок не вмещается в один ip пакет. Однако, если в момент send уже имеется неотосланный буфер, то ОС присоединит данные к нему, никакой отсылки отдельным пакетом не будет. Но в этом случае и так нет никакой гарантии, что какой-то блок сообщения пойдет в начале пакета, на что собственно и заточены DPI. Разбиение будет производится согласно MSS, который зависит от MTU исходящего интерфейса. Таким образом DPI, смотрящие в начало поля данных TCP пакета, будут поломаны в любом случае. Протокол http относится к запрос-ответным протоколам. Новое сообщение посылается только тогда, когда сервер получил запрос и полностью вернул ответ. Значит запрос фактически был не только отослан, но и принят другой стороной, а следовательно буфер отсылки пуст, и следующие 2 send приведут к отсылке сегментов данных разными ip пакетами.
Таким образом tpws обеспечивает сплит только за счет раздельных вызовов send, и это обычно работает надежно, если разбивать не на слишком много частей и не на слишком мелкие подряд следующие части. В последнем случае Linux все же может обьединить некоторые части, что приведет к несоответствию реальной сегментации указанным сплит позициям. Другие ОС в этом вопросе ведут себя более предсказуемо. Спонтанного обьединения замечено не было. Поэтому не стоит злоупотреблять сплитами и в особенности мелкими соседними пакетами.
Как показывается практика, проблемы могут начаться , если количество сплит позиций превышает 8. При неудаче сегментации будет выводиться сообщение WARNING ! segmentation failed . Если вы его видите, это повод снизить количество сплит позиций. Если это не вариант, для ядер Linux >=4.6 есть параметр --fix-seg . Он позволяет подождать завершение отсылки перед отправкой следующей части. Но этот вариант ломает модель асинхронной обработки событий. Пока идет ожидание, все остальные соединения не обрабатываются и кратковременно подвисают. На практике это может быть совсем небольшое ожидание - менее 10 мс. И производится оно только , если происходит split, и в ожидании есть реальная необходимость. В высоконагруженных системах данный вариант не рекомендуется. Но для домашнего использования может подойти, и вы эти задержки даже не заметите.
Если вы пытаетесь сплитнуть массивную передачу с --split-any-protocol , когда информация поступает быстрее отсылки, то без --fix-seg ошибки сегментации будут сыпаться сплошным потоком. Работа по массивному потоку без ограничителей --tamper-start и --tamper-cutoff обычно лишена смысла.
tpws работает на уровне сокетов, поэтому длинный запрос, не вмещающийся в 1 пакет (TLS с kyber), он получает целым блоком. На каждую сплит часть он делает отдельный вызов send() . Но ОС не сможет отослать данные в одном пакете, если размер превысит MTU. В случае слишком большого сегмента ОС дополнительно его порежет на более мелкие. Результат должен быть аналогичен nfqws.
--disorder заставляет слать каждый 2-й пакет с TTL=1, начиная с первого. К серверу приходят все четные пакеты сразу. На остальные ОС делает ретрансмиссию, и они приходят потом. Это само по себе создает дополнительную задержку (200 мс в linux для первой ретрансмиссии). Иным способом сделать disorder в сокет варианте не представляется возможным. Итоговый порядок для 6 сегментов получается 2 4 6 1 3 5 .
--oob высылает 1 байт out-of-band data после первого сплит сегмента. oob в каждом сегменте сплита показал себя ненадежным. Сервер получает oob в сокет.
Сочетание oob и disorder возможно только в Linux. Остальные ОС не умеют с таким справляться. Флаг URG теряется при ретрансмиссиях. Сервер получает oob в сокет. Сочетание этих параметров в ос, кроме Linux, вызывает ошибку на этапе запуска.
--tlsrec позволяют внутри одного tcp сегмента разрезать TLS ClientHello на 2 TLS records. Можно использовать стандартный механизм маркеров для задания относительных позиций.
--tlsrec ломает значительное количество сайтов. Криптобиблиотеки (openssl, ...) на оконечных http серверах без проблем принимают разделенные tls сегменты, но мидлбоксы - не всегда. К мидлбоксам можно отнести CDN или системы ddos-защиты. Поэтому применение --tlsrec без ограничителей вряд ли целесообразно. В РФ --tlsrec обычно не работает с TLS 1.2, потому что цензор парсит сертификат сервера из ServerHello. Работает только с TLS 1.3, поскольку там эта информация шифруется. Впрочем, сейчас сайтов, не поддерживающих TLS 1.3, осталось немного.
--mss устанавливает опцию сокета TCP_MAXSEG. Клиент выдает это значение в tcp опциях SYN пакета. Сервер в ответ в SYN,ACK выдает свой MSS. На практике сервера обычно снижают размеры отсылаемых ими пакетов, но они все равно не вписываются в низкий MSS, указанный клиентом. Обычно чем больше указал клиент, тем больше шлет сервер. На TLS 1.2 если сервер разбил заброс так, чтобы домен из сертификата не попал в первый пакет, это может обмануть DPI, секущий ответ сервера. Схема может значительно снизить скорость и сработать не на всех сайтах. С фильтром по hostlist совместимо только в режиме socks при включенном удаленном ресолвинге хостов. (firefox network.proxy.socks_remote_dns). Это единственный вариант, когда tpws может узнать имя хоста еще на этапе установления соединения. Применяя данную опцию к сайтам TLS1.3, если броузер тоже поддерживает TLS1.3, то вы делаете только хуже. Но нет способа автоматически узнать когда надо применять, когда нет, поскольку MSS идет только в 3-way handshake еще до обмена данными, а версию TLS можно узнать только по ответу сервера, который может привести к реакции DPI. Использовать только когда нет ничего лучше или для отдельных ресурсов. Для http использовать смысла нет, поэтому заводите отдельный desync profile с фильтром по порту 443. Работает только на Linux, не работает на BSD и MacOS.
Параметр --hostpad=<bytes> добавляет паддинг-хедеров перед Host: на указанное количество байтов. Если размер <bytes> слишком большой, то идет разбивка на разные хедеры по 2K. Общий буфер приема http запроса - 64K, больший паддинг не поддерживается, да и http сервера такое уже не принимают. Полезно против DPI, выполняющих реассемблинг TCP с ограниченным буфером. Если техника работает, то после некоторого количества bytes http запрос начнет проходить до сайта. Если при этом критический размер padding около MTU, значит скорее всего DPI не выполняет реассемблинг пакетов, и лучше будет использовать обычные опции TCP сегментации. Если все же реассемблинг выполняется, то критический размер будет около размера буфера DPI. Он может быть 4K или 8K, возможны и другие значения.
Работают аналогично nfqws , кроме некоторых моментов. Нет параметра --filter-udp , поскольку tpws udp не поддерживает. Методы нулевой фазы ( --mss ) могут работать по хостлисту в одном единственном случае: если используется режим socks и удаленный ресолвинг хостов через прокси. То есть работоспособность вашей настройки в одном и том же режиме может зависеть от того, применяет ли клиент удаленный ресолвинг. Это может быть неочевидно. В одной программе работает, в другой - нет. Если вы используете профиль с хостлистом , и вам нужен mss, укажите mss в профиле с хостлистом, создайте еще один профиль без хостлиста, если его еще нет, и в нем еще раз укажите mss. Тогда при любом раскладе будет выполняться mss. Используйте curl --socks5 и curl --socks5-hostname для проверки вашей стратегии. Смотрите вывод --debug , чтобы убедиться в правильности настроек.
--debug allows you to display a detailed log of actions to the console, in Syslog or to a file. The procedure for following the options may be important. --debug is best indicated at the very beginning. Options are analyzed sequentially. If the error is checking the option, and the case has not yet reached the --debug , then the messages will not be displayed to the file or Syslog. --debug=0|1|2 allow you to immediately include logistics on the console in one parameter and indicate the level. Saved for compatibility with older versions. To select a level in Syslog or File, use a separate parameter --debug-level . If in these --debug modes do not indicate the level through --debug-level , then level 1 is automatically assigned. When logging into the file, the process does not hold the file open. For the sake of each recording, the file opens and then closes. So the file can be deleted at any time, and it will be created again at the first message in the log. But keep in mind that if you start the process under the Root, you will be replaced by UID to non-ROOT. In the beginning, the file changes on the log, otherwise the recording will be impossible. If you then delete the file, and the process will not have the right to create a file in its directory, the log will no longer be conducted. Instead of removal, it is better to use truncate. In Shel, this can be done through the command ":> Filename"
tpws может биндаться на множество интерфейсов и IP адресов (до 32 шт). Порт всегда только один. Параметры --bind-iface* и --bind-addr создают новый бинд. Остальные параметры --bind-* относятся к последнему бинду. Для бинда на все ipv4 укажите --bind-addr "0.0.0.0" , на все ipv6 - "::" . --bind-addr="" - биндаемся на все ipv4 и ipv6. Выбор режима использования link local ipv6 адресов ( fe80::/8 ) :
--bind-iface6 --bind-linklocal=no : сначала приватный адрес fc00::/7, затем глобальный адрес
--bind-iface6 --bind-linklocal=unwanted : сначала приватный адрес fc00::/7, затем глобальный адрес, затем link local.
--bind-iface6 --bind-linklocal=prefer : сначала link local, затем приватный адрес fc00::/7, затем глобальный адрес.
--bind-iface6 --bind-linklocal=force : только link local
Если не указано ни одного бинда, то создается бинд по умолчанию на все адреса всех интерфейсов. Для бинда на конкретный link-local address делаем так : --bind-iface6=fe80::aaaa:bbbb:cccc:dddd%iface-name Параметры --bind-wait* могут помочь в ситуациях, когда нужно взять IP с интерфейса, но его еще нет, он не поднят или не сконфигурирован. В разных системах события ifup ловятся по-разному и не гарантируют, что интерфейс уже получил IP адрес определенного типа. В общем случае не существует единого механизма повеситься на событие типа "на интерфейсе X появился link local address". Для бинда на известный ip, когда еще интерфейс не сконфигурирован, нужно делать так: --bind-addr=192.168.5.3 --bind-wait-ip=20 В режиме transparent бинд возможен на любой несуществующий адрес, в режиме socks - только на существующий.
Параметры rcvbuf и sndbuf позволяют установить setsockopt SO_RCVBUF SO_SNDBUF для локального и удаленного соединения.
--skip-nodelay может быть полезен, когда tpws используется без дурения, чтобы привести MTU к MTU системы, на которой работает tpws. Это может быть полезно для скрытия факта использования VPN. Пониженный MTU - 1 из способов обнаружения подозрительного подключения. С tcp proxy ваши соединения неотличимы от тех, что сделал бы сам шлюз.
--local-tcp-user-timeout и --remote-tcp-user-timeout устанавливают значение таймаута в секундах для соединений клиент-прокси и прокси-сервер. Этот таймаут соответствует опции сокета linux TCP_USER_TIMEOUT. Под таймаутом подразумевается время, в течение которого буферизированные данные не переданы или на переданные данные не получено подтверждение (ACK) от другой стороны. Этот таймаут никак не касается времени отсутствия какой-либо передачи через сокет лишь потому, что данных для передачи нет. Полезно для сокращения время закрытия подвисших соединений. Поддерживается только на Linux и MacOS.
Режим --socks не требует повышенных привилегий (кроме бинда на привилегированные порты 1..1023). Поддерживаются версии socks 4 и 5 без авторизации. Версия протокола распознается автоматически. Подключения к IP того же устройства, на котором работает tpws, включая localhost, запрещены. socks5 позволяет удаленно ресолвить хосты (curl : --socks5-hostname firefox : socks_remote_dns=true). tpws поддерживает эту возможность асинхронно, не блокируя процессинг других соединений, используя многопоточный пул ресолверов. Количество потоков определяется автоматически в зависимости от --maxconn , но можно задать и вручную через параметр --resolver-threads . Запрос к socks выставляется на паузу, пока домен не будет преобразован в ip адрес в одном из потоков ресолвера. Ожидание может быть более длинным, если все потоки заняты. Если задан параметр --no-resolve , то подключения по именам хостов запрещаются, а пул ресолверов не создается. Тем самым экономятся ресурсы.
Для перенаправления tcp соединения на transparent proxy используются команды следующего вида :
iptables -t nat -I OUTPUT -o <внешний_интерфейс> -p tcp --dport 80 -m owner ! --uid-owner tpws -j DNAT --to 127.0.0.127:988
iptables -t nat -I PREROUTING -i <внутренний_интерфейс> -p tcp --dport 80 -j DNAT --to 127.0.0.127:988
Первая команда для соединений с самой системы, вторая - для проходящих через роутер соединений.
DNAT на localhost работает в цепочке OUTPUT, но не работает в цепочке PREROUTING без включения параметра route_localnet :
sysctl -w net.ipv4.conf.<внутренний_интерфейс>.route_localnet=1
Можно использовать -j REDIRECT --to-port 988 вместо DNAT, однако в этом случае процесс transparent proxy должен слушать на ip адресе входящего интерфейса или на всех адресах. Слушать на всех - не есть хорошо с точки зрения безопасности. Слушать на одном (локальном) можно, но в случае автоматизированного скрипта придется его узнавать, потом динамически вписывать в команду. В любом случае требуются дополнительные усилия. Использование route_localnet тоже имеет потенциальные проблемы с безопасностью. Вы делаете доступным все, что висит на 127.0.0.0/8 для локальной подсети < внутренний_интерфейс>. Службы обычно привязываются к 127.0.0.1 , поэтому можно средствами iptables запретить входящие на 127.0.0.1 не с интерфейса lo, либо повесить tpws на любой другой IP из из 127.0.0.0/8 , например на 127.0.0.127 , и разрешить входящие не с lo только на этот IP.
iptables -A INPUT ! -i lo -d 127.0.0.127 -j ACCEPT
iptables -A INPUT ! -i lo -d 127.0.0.0/8 -j DROP
Фильтр по owner необходим для исключения рекурсивного перенаправления соединений от самого tpws. tpws запускается под пользователем tpws , для него задается исключающее правило.
IP6Tables work almost in the same way as IPV4, but there are a number of important nuances. In Dnat, you should take the address --to in square brackets. Por ejemplo :
ip6tables -t nat -I OUTPUT -o <внешний_интерфейс> -p tcp --dport 80 -m owner ! --uid-owner tpws -j DNAT --to [::1]:988
Параметра route_localnet не существует для ipv6. DNAT на localhost (::1) возможен только в цепочке OUTPUT. В цепочке PREROUTING DNAT возможен на любой global address или на link local address того же интерфейса, откуда пришел пакет. NFQUEUE работает без изменений.
Базовая конфигурация :
IFACE_WAN=wan
IFACE_LAN=br-lan
sysctl -w net.ipv4.conf.$IFACE_LAN.route_localnet=1
nft create table inet ztest
nft create chain inet ztest localnet_protect
nft add rule inet ztest localnet_protect ip daddr 127.0.0.127 return
nft add rule inet ztest localnet_protect ip daddr 127.0.0.0/8 drop
nft create chain inet ztest input "{type filter hook input priority filter - 1;}"
nft add rule inet ztest input iif != "lo" jump localnet_protect
nft create chain inet ztest dnat_output "{type nat hook output priority dstnat;}"
nft add rule inet ztest dnat_output meta skuid != tpws oifname $IFACE_WAN tcp dport { 80, 443 } dnat ip to 127.0.0.127:988
nft create chain inet ztest dnat_pre "{type nat hook prerouting priority dstnat;}"
nft add rule inet ztest dnat_pre meta iifname $IFACE_LAN tcp dport { 80, 443 } dnat ip to 127.0.0.127:988
Удаление таблицы :
nft delete table inet ztest
! NFTables cannot work with IPSET-am. Own similar mechanism requires a huge amount of RAM !!! To download large sheets. For example, even 256 MB is not enough for a 100K post in NFSET. ! If you need large sheets on home routers, roll back to the iPtables+IPSET.
ipset/zapret-hosts-user.txt и запустите ipset/get_user.sh На выходе получите ipset/zapret-ip-user.txt с IP адресами.Cкрипты с названием get_reestr_* оперируют дампом реестра заблокированных сайтов :
ipset/get_reestr_resolve.sh получает список доменов от rublacklist и дальше их ресолвит в ip адреса в файл ipset/zapret-ip.txt.gz. В этом списке есть готовые IP адреса, но судя во всему они там в точности в том виде, что вносит в реестр РосКомПозор. Адреса могут меняться, позор не успевает их обновлять, а провайдеры редко банят по IP : вместо этого они банят http запросы с "нехорошим" заголовком "Host:" вне зависимости от IP адреса. Поэтому скрипт ресолвит все сам, хотя это и занимает много времени. Используется мультипоточный ресолвер mdig (собственная разработка).
ipset/get_reestr_preresolved.sh . то же самое, что и 2), только берется уже заресолвленый список со стороннего ресурса.
ipset/get_reestr_preresolved_smart.sh . то же самое, что и 3), с добавлением всего диапазона некоторых автономных систем (прыгающие IP адреса из cloudflare, facebook, ...) и некоторых поддоменов блокируемых сайтов
Cкрипты с названием get_antifilter_* оперируют списками адресов и масок подсетей с сайтов antifilter.network и antifilter.download :
ipset/get_antifilter_ip.sh . получает лист https://antifilter.download/list/ip.lst.
ipset/get_antifilter_ipsmart.sh . получает лист https://antifilter.network/download/ipsmart.lst. умная суммаризация отдельных адресов из ip.lst по маскам от /32 до /22
ipset/get_antifilter_ipsum.sh . получает лист https://antifilter.download/list/ipsum.lst. суммаризация отдельных адресов из ip.lst по маске /24
ipset/get_antifilter_ipresolve.sh . получает лист https://antifilter.download/list/ipresolve.lst. пре-ресолвленный список, аналогичный получаемый при помощи get_reestr_resolve. только ipv4.
ipset/get_antifilter_allyouneed.sh . получает лист https://antifilter.download/list/allyouneed.lst. Суммарный список префиксов, созданный из ipsum.lst и subnet.lst.
ipset/get_refilter_ipsum.sh . Список берется отсюда : https://github.com/1andrevich/Re-filter-lists
Все варианты рассмотренных скриптов автоматически создают и заполняют ipset. Варианты 2-10 дополнительно вызывают вариант 1.
ipset/get_config.sh . этот скрипт вызывает то, что прописано в переменной GETLIST из файла config Если переменная не определена, то ресолвятся лишь листы для ipset nozapret/nozapret6.Листы РКН все время изменяются. Возникают новые тенденции. Требования к RAM могут меняться. Поэтому необходима нечастая, но все же регулярная ревизия что же вообще у вас происходит на роутере. Или вы можете узнать о проблеме лишь когда у вас начнет постоянно пропадать wifi, и вам придется его перезагружать каждые 2 часа (метод кувалды).
Самые щадящие варианты по RAM - get_antifilter_allyouneed.sh , get_antifilter_ipsum.sh , get_refilter_*.sh .
Листы zapret-ip.txt и zapret-ipban.txt сохраняются в сжатом виде в файлы .gz. Это позволяет снизить их размер во много раз и сэкономить место на роутере. Отключить сжатие листов можно параметром конфига GZIP_LISTS=0.
На роутерах не рекомендуется вызывать эти скрипты чаще раза за 2 суток, поскольку сохранение идет либо во внутреннюю флэш память роутера, либо в случае extroot - на флэшку. В обоих случаях слишком частая запись может убить флэшку, но если это произойдет с внутренней флэш памятью, то вы просто убьете роутер.
Принудительное обновление ipset выполняет скрипт ipset/create_ipset.sh . Если передан параметр no-update , скрипт не обновляет ipset , а только создает его при его отсутствии и заполняет. Это полезно, когда могут случиться несколько последовательных вызовов скрипта. Нет смысла несколько раз перезаполнять ipset , это длительная операция на больших листах. Листы можно обновлять раз в несколько суток, и только тогда вызывать create_ipset без параметра no-update . Во всех остальных случаях стоит применять no-update .
Список РКН уже достиг внушительных размеров в сотни тысяч IP адресов. Поэтому для оптимизации ipset применяется утилита ip2net . Она берет список отдельных IP адресов и пытается интеллектуально создать из него подсети для сокращения количества адресов. ip2net отсекает неправильные записи в листах, гарантируя отсутствие ошибок при их загрузке. ip2net написан на языке C, поскольку операция ресурсоемкая. Иные способы роутер может не потянуть.
Можно внести список доменов в ipset/zapret-hosts-user-ipban.txt . Их ip адреса будут помещены в отдельный ipset ipban . Он может использоваться для принудительного завертывания всех соединений на прозрачный proxy redsocks или на VPN.
IPV6 : если включен ipv6, то дополнительно создаются листы с таким же именем, но с "6" на конце перед расширением. zapret-ip.txt => zapret-ip6.txt Создаются ipset-ы zapret6 и ipban6. Листы с antifilter не содержат список ipv6 адресов.
СИСТЕМА ИСКЛЮЧЕНИЯ IP . Все скрипты ресолвят файл zapret-hosts-user-exclude.txt , создавая zapret-ip-exclude.txt и zapret-ip-exclude6.txt . Они загоняются в ipset-ы nozapret и nozapret6. Все правила, создаваемые init скриптами, создаются с учетом этих ipset. Помещенные в них IP не участвуют в процессе. zapret-hosts-user-exclude.txt может содержать домены, ipv4 и ipv6 адреса или подсети.
FreeBSD . Скрипты ipset/*.sh работают так же на FreeBSD. Вместо ipset они создают lookup таблицы ipfw с аналогичными именами. ipfw таблицы в отличие от ipset могут содержать как ipv4, так и ipv6 адреса и подсети в одной таблице, поэтому разделения нет.
Параметр конфига LISTS_RELOAD задает произвольную команду для перезагрузки листов. Это особенно полезно на BSD системах с PF. LISTS_RELOAD=- отключает перезагрузку листов.
Утилита ip2net предназначена для преобразования ipv4 или ipv6 списка ip в список подсетей с целью сокращения размера списка. Входные данные берутся из stdin, выходные выдаются в stdout .
-4 ; лист - ipv4 (по умолчанию)
-6 ; лист - ipv6
--prefix-length=min[-max] ; диапазон рассматриваемых длин префиксов. например : 22-30 (ipv4), 56-64 (ipv6)
--v4-threshold=mul/div ; ipv4 : включать подсети, в которых заполнено по крайней мере mul/div адресов. например : 3/4
--v6-threshold=N ; ipv6 : минимальное количество ip для создания подсети
В списке могут присутствовать записи вида ip/prefix и ip1-ip2. Такие записи выкидываются в stdout без изменений. Они принимаются командой ipset. ipset умеет для листов hash:net из ip1-ip2 делать оптимальное покрытие ip/prefix. ipfw из FreeBSD понимает ip/prefix, но не понимает ip1-ip2. ip2net фильтрует входные данные, выкидывая неправильные IP адреса.
Выбирается подсеть, в которой присутствует указанный минимум адресов. Для ipv4 минимум задается как процент от размера подсети (mul/div. например, 3/4), для ipv6 минимум задается напрямую.
Размер подсети выбирается следующим алгоритмом: Сначала в указанном диапазоне длин префиксов ищутся подсети, в которых количество адресов - максимально. Если таких сетей найдено несколько, берется наименьшая сеть (префикс больше). Например, заданы параметры v6_threshold=2 prefix_length=32-64, имеются следующие ipv6 :
1234:5678:aaaa::5
1234:5678:aaaa::6
1234:5678:aaac::5
Результат будет :
1234:5678:aaa8::/45
Эти адреса так же входят в подсеть /32. Однако, нет смысла проходиться ковровой бомбардировкой, когда те же самые адреса вполне влезают в /45 и их ровно столько же. Если изменить v6_threshold=4, то результат будет:
1234:5678:aaaa::5
1234:5678:aaaa::6
1234:5678:aaac::5
То есть ip не объединятся в подсеть, потому что их слишком мало. Если изменить prefix_length=56-64 , результат будет:
1234:5678:aaaa::/64
1234:5678:aaac::5
Требуемое процессорное время для вычислений сильно зависит от ширины диапазона длин префиксов, размера искомых подсетей и длины листа. Если ip2net думает слишком долго, не используйте слишком большие подсети и уменьшите диапазон длин префиксов. Учтите, что арифметика mul/div - целочисленная. При превышении разрядной сетки 32 bit результат непредсказуем. Не надо делать такое: 5000000/10000000. 1/2 - гораздо лучше.
Программа предназначена для многопоточного ресолвинга больших листов через системный DNS. Она берет из stdin список доменов и выводит в stdout результат ресолвинга. Ошибки выводятся в stderr.
--threads=<threads_number> ; количество потоков. по умолчанию 1.
--family=<4|6|46> ; выбор семейства IP адресов : ipv4, ipv6, ipv4+ipv6
--verbose ; дебаг-лог на консоль
--stats=N ; выводить статистику каждые N доменов
--log-resolved=<file> ; сохранять успешно отресолвленные домены в файл
--log-failed=<file> ; сохранять неудачно отресолвленные домены в файл
--dns-make-query=<domain> ; вывести в stdout бинарный DNS запрос по домену. если --family=6, запрос будет AAAA, иначе A.
--dns-parse-query ; распарсить бинарный DNS ответ и выдать все ivp4 и ipv6 адреса из него в stdout
Параметры --dns-make-query и --dns-parse-query позволяют провести ресолвинг одного домена через произвольный канал. Например, следующим образом можно выполнить DoH запрос, используя лишь mdig и curl :
mdig --family=6 --dns-make-query=rutracker.org | curl --data-binary @- -H "Content-Type: application/dns-message" https://cloudflare-dns.com/dns-query | mdig --dns-parse-query
Альтернативой ipset является использование tpws или nfqws со списком доменов. Оба демона принимают неограниченное количество листов include ( --hostlist ) и exclude ( --hostlist-exclude ). Прежде всего проверяются exclude листы. При вхождении в них происходит отказ от дурения. Далее при наличии include листов проверяется домен на вхождение в них. При невхождении в список отказ от дурения. Если все include листы пустые, это приравнивается к отсутствию include листов. Ограничение перестает работать. В иных случаях происходит дурение. Нет ни одного списка - дурение всегда. Есть только exclude список - дурение всех, кроме. Есть только include список - дурение только их. Есть оба - дурение только include, кроме exclude.
В системе запуска это обыграно следующим образом. Присутствуют 2 include списка : ipset/zapret-hosts-users.txt.gz или ipset/zapret-hosts-users.txt , ipset/zapret-hosts.txt.gz или ipset/zapret-hosts.txt и 1 exclude список ipset/zapret-hosts-users-exclude.txt.gz или ipset/zapret-hosts-users-exclude.txt
При режимах фильтрации MODE_FILTER=hostlist или MODE_FILTER=autohostlist система запуска передает nfqws или tpws все листы, файлы которых присутствуют. Передача происходит через замену маркеров <HOSTLIST> и <HOSTLIST_NOAUTO> на реальные параметры --hostlist , --hostlist-exclude , --hostlist-auto . Если вдруг листы include присутствуют, но все они пустые, то работа аналогична отсутствию include листа. Файл есть, но не смотря на это дурится все, кроме exclude. Если вам нужен именно такой режим - не обязательно удалять zapret-hosts-users.txt . Достаточно сделать его пустым.
Поддомены учитываются автоматически. Например, строчка "ru" вносит в список " .ru". Строчка " .ru" в списке не сработает.
Список доменов РКН может быть получен скриптами
ipset/get_reestr_hostlist.sh
ipset/get_antizapret_domains.sh
ipset/get_reestr_resolvable_domains.sh
ipset/get_refilter_domains.sh
Он кладется в ipset/zapret-hosts.txt.gz .
При изменении времени модификации файлов списки перечитываются автоматически.
При фильтрации по именам доменов демон должен запускаться без фильтрации по ipset. tpws и nfqws решают нужно ли применять дурение в зависимости от хоста, полученного из протокола прикладного уровня (http, tls, quic). При использовании больших списков, в том числе списка РКН, оцените объем RAM на роутере ! Если после запуска демона RAM под завязку или случаются oom, значит нужно отказаться от таких больших списков.
Этот режим позволяет проанализировать как запросы со стороны клиента, так и ответы от сервера. Если хост еще не находится ни в каких листах и обнаруживается ситуация, похожая на блокировку, происходит автоматическое добавление хоста в список autohostlist как в памяти, так и в файле. nfqws или tpws сами ведут этот файл. Чтобы какой-то хост не смог попась в autohostlist используйте hostlist-exclude . Если он все-же туда попал - удалите запись из файла вручную. Процессы автоматически перечитают файл. tpws / nfqws сами назначают владельцем файла юзера, под которым они работают после сброса привилегий, чтобы иметь возможность обновлять лист.
В случае nfqws данный режим требует перенаправления в том числе и входящего трафика. Крайне рекомендовано использовать ограничитель connbytes , чтобы nfqws не обрабатывал гигабайты. По этой же причине не рекомендуется использование режима на BSD системах. Там нет фильтра connbytes .
На linux системах при использовании nfqws и фильтра connbytes может понадобится : sysctl net.netfilter.nf_conntrack_tcp_be_liberal=1 Было замечено, что некоторые DPI в России возвращают RST с неверным ACK. Это принимается tcp/ip стеком linux, но через раз приобретает статус INVALID в conntrack. Поэтому правила с connbytes срабатывают через раз, не пересылая RST пакет nfqws .
Как вообще могут вести себя DPI, получив "плохой запрос" и приняв решение о блокировке:
nfqws и tpws могут сечь варианты 1-3, 4 они не распознают. Всилу специфики работы с отдельными пакетами или с TCP каналом tpws и nfqws распознают эти ситуации по-разному. Что считается ситуацией, похожей на блокировку :
Чтобы снизить вероятность ложных срабатываний, имеется счетчик ситуаций, похожих на блокировку. Если за определенное время произойдет более определенного их количества, хост считается заблокированным и заносится в autohostlist . По нему сразу же начинает работать стратегия по обходу блокировки. Если в процессе счета вебсайт отвечает без признаков блокировки, счетчик сбрасывается. Вероятно, это был временный сбой сайта.
На практике работа с данным режимом выглядит так. Первый раз пользователь заходит на сайт и получает заглушку, сброс соединения или броузер подвисает, вываливаясь по таймауту с сообщением о невозможности загрузить страницу. Надо долбить F5, принуждая броузер повторять попытки. После некоторой попытки сайт начинает работать, и дальше он будет работать всегда.
С этим режимом можно использовать техники обхода, ломающие значительное количество сайтов. Если сайт не ведет себя как заблокированный, значит обход применен не будет. В противном случае терять все равно нечего. Однако, могут быть временные сбои сервера, приводящие к ситуации, аналогичной блокировке. Могут происходит ложные срабатывания. Если такое произошло, стратегия может начать ломать незаблокированный сайт. Эту ситуацию, увы, придется вам контролировать вручную. Заносите такие домены в ipset/zapret-hosts-user-exclude.txt , чтобы избежать повторения. Чтобы впоследствии разобраться почему домен был занесен в лист, можно включить autohostlist debug log . Он полезен тем, что работает без постоянного просмотра вывода nfqws в режиме debug. В лог заносятся только основные события, ведущие к занесению хоста в лист. По логу можно понять как избежать ложных срабатываний и подходит ли вообще вам этот режим.
Можно использовать один autohostlist с множеством процессов. Все процессы проверяют время модификации файла. Если файл был изменен в другом процессе, происходит его перечитывание. Все процессы должны работать под одним uid, чтобы были права доступа на файл.
Скрипты zapret ведут autohostlist в ipset/zapret-hosts-auto.txt . install_easy.sh при апгрейде zapret сохраняет этот файл. Режим autohostlist включает в себя режим hostlist . Можно вести ipset/zapret-hosts-user.txt , ipset/zapret-hosts-user-exclude.txt .
Перед настройкой нужно провести исследование какую бяку устроил вам ваш провайдер.
Нужно выяснить не подменяет ли он DNS и какой метод обхода DPI работает. В этом вам поможет скрипт blockcheck.sh .
Если DNS подменяется, но провайдер не перехватывает обращения к сторонним DNS, поменяйте DNS на публичный. Например: 8.8.8.8, 8.8.4.4, 1.1.1.1, 1.0.0.1, 9.9.9.9 Если DNS подменяется и провайдер перехватывает обращения к сторонним DNS, настройте dnscrypt . Еще один эффективный вариант - использовать ресолвер от yandex 77.88.8.88 на нестандартном порту 1253. Многие провайдеры не анализируют обращения к DNS на нестандартных портах. blockcheck если видит подмену DNS автоматически переключается на DoH сервера.
Следует прогнать blockcheck по нескольким заблокированным сайтам и выявить общий характер блокировок. Разные сайты могут быть заблокированы по-разному, нужно искать такую технику, которая работает на большинстве. Чтобы записать вывод blockcheck.sh в файл, выполните: ./blockcheck.sh | tee /tmp/blockcheck.txt .
Проанализируйте какие методы дурения DPI работают, в соответствии с ними настройте /opt/zapret/config .
Имейте в виду, что у провайдеров может быть несколько DPI или запросы могут идти через разные каналы по методу балансировки нагрузки. Балансировка может означать, что на разных ветках разные DPI или они находятся на разных хопах. Такая ситуация может выражаться в нестабильности работы обхода. Дернули несколько раз curl. То работает, то connection reset или редирект. blockcheck.sh выдает странноватые результаты. То split работает на 2-м. хопе, то на 4-м. Достоверность результата вызывает сомнения. В этом случае задайте несколько повторов одного и того же теста. Тест будет считаться успешным только, если все попытки пройдут успешно.
При использовании autottl следует протестировать как можно больше разных доменов. Эта техника может на одних провайдерах работать стабильно, на других потребуется выяснить при каких параметрах она стабильна, на третьих полный хаос, и проще отказаться.
Blockcheck имеет 3 уровня сканирования.
quick - максимально быстро найти хоть что-то работающее.standard дает возможность провести исследование как и на что реагирует DPI в плане методов обхода.force дает максимум проверок даже в случаях, когда ресурс работает без обхода или с более простыми стратегиями.Есть ряд других параметров, которые не будут спрашиваться в диалоге, но которые можно переопределить через переменные.
CURL - замена программы curl
CURL_MAX_TIME - время таймаута curl в секундах
CURL_MAX_TIME_QUIC - время таймаута curl для quic. если не задано, используется значение CURL_MAX_TIME
CURL_CMD=1 - показывать команды curl
CURL_OPT - дополнительные параметры curl. `-k` - игнор сертификатов. `-v` - подробный вывод протокола
DOMAINS - список тестируемых доменов через пробел
HTTP_PORT, HTTPS_PORT, QUIC_PORT - номера портов для соответствующих протоколов
SKIP_DNSCHECK=1 - отказ от проверки DNS
SKIP_TPWS=1 - отказ от тестов tpws
SKIP_PKTWS=1 - отказ от тестов nfqws/dvtws/winws
PKTWS_EXTRA, TPWS_EXTRA - дополнительные параметры nfqws/dvtws/winws и tpws
PKTWS_EXTRA_1 .. PKTWS_EXTRA_9, TPWS_EXTRA_1 .. TPWS_EXTRA_9 - отдельно дополнительные параметры, содержащие пробелы
SECURE_DNS=0|1 - принудительно выключить или включить DoH
DOH_SERVERS - список URL DoH через пробел для автоматического выбора работающего сервера
DOH_SERVER - конкретный DoH URL, отказ от поиска
UNBLOCKED_DOM - незаблокированный домен, который используется для тестов IP block
Пример запуска с переменными:
SECURE_DNS=1 SKIP_TPWS=1 CURL_MAX_TIME=1 CURL=/tmp/curl ./blockcheck.sh
СКАН ПОРТОВ
Если в системе присутствует совместимый netcat (ncat от nmap или openbsd ncat. в openwrt по умолчанию нет), то выполняется сканирование портов http или https всех IP адресов домена. Если ни один IP не отвечает, то результат очевиден. Можно останавливать сканирование. Автоматически оно не остановится, потому что netcat-ы недостаточно подробно информируют о причинах ошибки. Если доступна только часть IP, то можно ожидать хаотичных сбоев, т.к. подключение идет к случайному адресу из списка.
ПРОВЕРКА НА ЧАСТИЧНЫЙ IP block
Под частичным блоком подразумевается ситуация, когда коннект на порты есть, но по определенному транспортному или прикладному протоколу всегда идет реакция DPI вне зависимости от запрашиваемого домена. Эта проверка так же не выдаст автоматического вердикта/решения, потому что может быть очень много вариаций. Вместо этого анализ происходящего возложен на самого пользователя или тех, кто будет читать лог. Суть этой проверки в попытке дернуть неблокированный IP с блокированным доменом и наоборот, анализируя при этом реакцию DPI. Реакция DPI обычно проявляется в виде таймаута (зависание запроса), connection reset или http redirect на заглушку. Любой другой вариант скорее всего говорит об отсутствии реакции DPI. В частности, любые http коды, кроме редиректа, ведущего именно на заглушку, а не куда-то еще. На TLS - ошибки handshake без задержек. Ошибка сертификата может говорить как о реакции DPI с MiTM атакой (подмена сертификата), так и о том, что принимающий сервер неблокированного домена все равно принимает ваш TLS handshake с чужим доменом, пытаясь при этом выдать сертификат без запрошенного домена. Требуется дополнительный анализ. Если на заблокированный домен есть реакция на всех IP адресах, значит есть блокировка по домену. Если на неблокированный домен есть реакция на IP адресах блокированного домена, значит имеет место блок по IP. Соответственно, если есть и то, и другое, значит есть и блок по IP, и блок по домену. Неблокированный домен первым делом проверяется на доступность на оригинальном адресе. При недоступности тест отменяется, поскольку он будет неинформативен.
Если выяснено, что есть частичный блок по IP на DPI, то скорее всего все остальные тесты будут провалены вне зависимости от стратегий обхода. Но бывают и некоторые исключения. Например, пробитие через ipv6 option headers . Или сделать так, чтобы он не мог распознать протокол прикладного уровня. Дальнейшие тесты могут быть не лишены смысла.
ПРИМЕРЫ БЛОКИРОВКИ ТОЛЬКО ПО ДОМЕНУ БЕЗ БЛОКА ПО IP
> testing iana.org on it's original
!!!!! AVAILABLE !!!!!
> testing rutracker.org on 192.0.43.8 (iana.org)
curl: (28) Operation timed out after 1002 milliseconds with 0 bytes received
> testing iana.org on 172.67.182.196 (rutracker.org)
HTTP/1.1 409 Conflict
> testing iana.org on 104.21.32.39 (rutracker.org)
HTTP/1.1 409 Conflict
> testing iana.org on it's original ip
!!!!! AVAILABLE !!!!!
> testing rutracker.org on 192.0.43.8 (iana.org)
curl: (28) Connection timed out after 1001 milliseconds
> testing iana.org on 172.67.182.196 (rutracker.org)
curl: (35) OpenSSL/3.2.1: error:0A000410:SSL routines::ssl/tls alert handshake failure
> testing iana.org on 104.21.32.39 (rutracker.org)
curl: (35) OpenSSL/3.2.1: error:0A000410:SSL routines::ssl/tls alert handshake failure
> testing iana.org on it's original ip
!!!!! AVAILABLE !!!!!
> testing rutracker.org on 192.0.43.8 (iana.org)
HTTP/1.1 307 Temporary Redirect
Location: https://www.gblnet.net/blocked.php
> testing iana.org on 172.67.182.196 (rutracker.org)
HTTP/1.1 409 Conflict
> testing iana.org on 104.21.32.39 (rutracker.org)
HTTP/1.1 409 Conflict
> testing iana.org on it's original ip
!!!!! AVAILABLE !!!!!
> testing rutracker.org on 192.0.43.8 (iana.org)
curl: (35) Recv failure: Connection reset by peer
> testing iana.org on 172.67.182.196 (rutracker.org)
curl: (35) OpenSSL/3.2.1: error:0A000410:SSL routines::ssl/tls alert handshake failure
> testing iana.org on 104.21.32.39 (rutracker.org)
curl: (35) OpenSSL/3.2.1: error:0A000410:SSL routines::ssl/tls alert handshake failure
ПРИМЕР ПОЛНОГО IP БЛОКА ИЛИ БЛОКА TCP ПОРТА ПРИ ОТСУТСТВИИ БЛОКА ПО ДОМЕНУ
* port block tests ipv4 startmail.com:80
ncat -z -w 1 145.131.90.136 80
145.131.90.136 does not connect. netcat code 1
ncat -z -w 1 145.131.90.152 80
145.131.90.152 does not connect. netcat code 1
* curl_test_http ipv4 startmail.com
- checking without DPI bypass
curl: (28) Connection timed out after 2002 milliseconds
UNAVAILABLE code=28
- IP block tests (requires manual interpretation)
> testing iana.org on it's original ip
!!!!! AVAILABLE !!!!!
> testing startmail.com on 192.0.43.8 (iana.org)
HTTP/1.1 302 Found
Location: https://www.iana.org/
> testing iana.org on 145.131.90.136 (startmail.com)
curl: (28) Connection timed out after 2002 milliseconds
> testing iana.org on 145.131.90.152 (startmail.com)
curl: (28) Connection timed out after 2002 milliseconds
Файл /opt/zapret/config используется различными компонентами системы и содержит основные настройки. Его нужно просмотреть и при необходимости отредактировать.
На linux системах можно выбрать использовать iptables или nftables . По умолчанию на традиционных linux выбирается nftables , если установлен nft. На openwrt по умолчанию выбирается nftables на новых версиях с firewall4.
FWTYPE=iptables
На nftables можно отключить стандартную схему перехвата трафика после NAT и перейти на перехват до NAT. Это сделает невозможным применение некоторых методов дурения на проходящем трафике как в случае с iptables . nfqws начнет получать адреса пакетов из локальной сети и отображать их в логах.
POSTNAT=0
Существует 3 стандартных опции запуска, настраиваемых раздельно и независимо: tpws-socks , tpws , nfqws . Их можно использовать как по отдельности, так и вместе. Например, вам надо сделать комбинацию из методов, доступных только в tpws и только в nfqws . Их можно задействовать вместе. tpws будет прозрачно локализовывать трафик на системе и применять свое дурение, nfqws будет дурить трафик, исходящий с самой системы после обработки на tpws . А можно на эту же систему повесить без параметров socks proxy, чтобы получать доступ к обходу блокировок через прокси. Таким образом, все 3 режима вполне могут задействоваться вместе. Так же безусловно и независимо, в добавок к стандартным опциям, применяются все custom скрипты в init.d/{sysv,openwrt,macos}/custom.d .
Однако, при комбинировании tpws и nfqws с пересечением по L3/L4 протоколам не все так просто , как может показаться на первый взгляд. Первым всегда работает tpws, за ним - nfqws. На nfqws попадает уже "задуренный" трафик от tpws. Получается, что дурилка дурит дурилку, и дурилка не срабатывает, потому что ее задурили. Вот такой веселый момент. nfqws перестает распознавать протоколы и применять методы. Некоторые методы дурения от tpws nfqws в состоянии распознать и отработать корректно, но большинство - нет. Решение - использование --dpi-desync-any-protocol в nfqws и работа как с неизвестным протоколом. Комбинирование tpws и nfqws является продвинутым вариантом, требующим глубокого понимания происходящего. Очень желательно проанализировать действия nfqws по --debug логу. Все ли так, как вы задумали.
Одновременное использование tpws и nfqws без пересечения по L3/L4 (то есть nfqws - udp, tpws - tcp или nfqws - port 443, tpws - port 80 или nfqws - ipv4, tpws - ipv6) проблем не представляет.
tpws-socks требует настройки параметров tpws , но не требует перехвата трафика. Остальные опции требуют раздельно настройки перехвата трафика и опции самих демонов. Каждая опция предполагает запуск одного инстанса соответствующего демона. Все различия методов дурения для http , https , quic и т.д. должны быть отражены через схему мультистратегий. В этом смысле настройка похожа на вариант winws на Windows, а перенос конфигов не должен представлять больших сложностей. Основное правило настройки перехвата - перехватывайте только необходимый минимум. Любой перехват лишнего - это бессмысленная нагрузка на вашу систему. Опции демонов --ipset использовать запрещено. Это сделано намеренно и искусственно, чтобы не поощрять простой и работающий, но неэффективный метод на *nix системах. Используйте ipset -ы режима ядра. При необходимости пишите и задействуйте custom scripts . Настройки демонов можно для удобства писать на нескольких строках, используя двойные или одинарные кавычки. Чтобы задействовать стандартные обновляемые хост-листы из ipset , используйте маркер . Он будет заменен на параметры, соответствующие режиму MODE_FILTER, и будут подставлены реально существующие файлы. Если MODE_FILTER не предполагает стандартного хостлиста, будет заменен на пустую строку. Стандартные хостлисты следует вставлять в финальных стратегиях (стратегиях по умолчанию), закрывающих цепочки по группе параметров фильтра. Таких мест может быть несколько. Не нужно использовать в узких специализациях и в тех профилях, по которым точно не будет проходить трафик с известными протоколами, откуда поддерживается извлечение имени хоста ( http , tls , quic ). <HOSTLIST_NOAUTO> - это вариация, при которой стандартный автолист используется как обычный. То есть на этом профиле не происходит автоматическое добавление заблокированных доменов. Но если на другом профиле что-то будет добавлено, то этот профиль примет изменения автоматически.
Включение стандартной опции tpws в режиме socks
TPWS_SOCKS_ENABLE=0
На каком порту будет слушать tpws socks. прослушивается только localhost и LAN
TPPORT_SOCKS=987
Параметры tpws для режима socks
TPWS_SOCKS_OPT="
--filter-tcp=80 --methodeol <HOSTLIST> --new
--filter-tcp=443 --split-pos=1,midsld --disorder <HOSTLIST>"
Включение стандартной опции tpws в прозрачном режиме
TPWS_ENABLE=0
Какие tcp порты следует перенаправлять на tpws
TPWS_PORTS=80,443
Параметры tpws для прозрачного режима
TPWS_OPT="
--filter-tcp=80 --methodeol <HOSTLIST> --new
--filter-tcp=443 --split-pos=1,midsld --disorder <HOSTLIST>"
Включение стандартной опции nfqws
NFQWS_ENABLE=0
Какие tcp и udp порты следует перенаправлять на nfqws с использованием connbytes ограничителя
connbytes позволяет из каждого соединения перенаправить только заданное количество начальных пакетов по каждому направлению - на вход и на выход. Это более эффективная kernel-mode замена параметра nfqws --dpi-desync-cutoff=nX .
NFQWS_PORTS_TCP=80,443
NFQWS_PORTS_UDP=443
Сколько начальных входящих и исходящих пакетов нужно перенаправлять на nfqws по каждому направлению
NFQWS_TCP_PKT_OUT=$((6+$AUTOHOSTLIST_RETRANS_THRESHOLD))
NFQWS_TCP_PKT_IN=3
NFQWS_UDP_PKT_OUT=$((6+$AUTOHOSTLIST_RETRANS_THRESHOLD))
NFQWS_UDP_PKT_IN=0
Задать порты для перенаправления на nfqws без connbytes ограничителя
Есть трафик, исходящий сеанс для которого необходимо перенаправлять весь без ограничителей. Типичное применение - поддержка http keepalives на stateless DPI. Это существенно нагружает процессор. Использовать только если понимаете зачем. Чаще всего это не нужно. Входящий трафик ограничивается по connbytes через параметры PKT_IN. Если указываете здесь какие-то порты, желательно их убрать из версии с connbytes ограничителем
NFQWS_PORTS_TCP_KEEPALIVE=80
NFQWS_PORTS_UDP_KEEPALIVE=
Параметры nfqws
NFQWS_OPT="
--filter-tcp=80 --dpi-desync=fake,multisplit --dpi-desync-split-pos=method+2 --dpi-desync-fooling=md5sig <HOSTLIST> --new
--filter-tcp=443 --dpi-desync=fake,multidisorder --dpi-desync-split-pos=1,midsld --dpi-desync-fooling=badseq,md5sig <HOSTLIST> --new
--filter-udp=443 --dpi-desync=fake --dpi-desync-repeats=6 <HOSTLIST_NOAUTO>
Режим фильтрации хостов:
none - применять дурение ко всем хостам
ipset - ограничить дурение ipset-ом zapret/zapret6
hostlist - ограничить дурение списком хостов из файла
autohostlist - режим hostlist + распознавание блокировок и ведение автоматического листа
MODE_FILTER=none
Настройка системы управления выборочным traffic offload (только если поддерживается)
donttouch: выборочное управление отключено, используется системная настройка, простой инсталлятор выключает системную настройку, если она не совместима с выбранным режимом
none: выборочное управление отключено, простой инсталлятор выключает системную настройку
software: выборочное управление включено в режиме software, простой инсталлятор выключает системную настройку
hardware: выборочное управление включено в режиме hardware, простой инсталлятор выключает системную настройку
FLOWOFFLOAD=donttouch
Параметр GETLIST указывает инсталлятору install_easy.sh какой скрипт дергать для обновления списка заблокированных ip или хостов. Он же вызывается через get_config.sh из запланированных заданий (crontab или systemd timer). Поместите сюда название скрипта, который будете использовать для обновления листов. Если не нужно, то параметр следует закомментировать.
Можно индивидуально отключить ipv4 или ipv6. Если параметр закомментирован или не равен "1", использование протокола разрешено.
DISABLE_IPV4=1
DISABLE_IPV6=1
Количество потоков для многопоточного DNS ресолвера mdig (1..100). Чем их больше, тем быстрее, но не обидится ли на долбежку ваш DNS сервер?
MDIG_THREADS=30
Место для хранения временных файлов. При скачивании огромных реестров в /tmp места может не хватить. Если файловая система на нормальном носителе (не встроенная память роутера), то можно указать место на флэшке или диске. TMPDIR=/opt/zapret/tmp
Опции для создания ipset-ов и nfset-ов
SET_MAXELEM=262144
IPSET_OPT="hashsize 262144 maxelem 2097152"
Хук, позволяющий внести ip адреса динамически. $1 = имя таблицы
Адреса выводятся в stdout. В случае nfset автоматически решается проблема возможного пересечения интервалов.
IPSET_HOOK="/etc/zapret.ipset.hook"
ПРО РУГАНЬ в dmesg по поводу нехватки памяти.
Может так случиться, что памяти в системе достаточно, но при попытке заполнить огромный ipset ядро начинает громко ругаться, ipset заполняется не полностью.
Вероятная причина в том, что превышается hashsize , заданный при создании ipset (create_ipset.sh). Происходит переаллокация списка, не находится непрерывных фрагментов памяти нужной длины. Это лечится увеличением hashsize . Но чем больше hashsize , тем больше занимает ipset в памяти. Задавать слишком большой hashsize для недостаточно больших списков нецелесообразно.
Опции для вызова ip2net. Отдельно для листов ipv4 и ipv6.
IP2NET_OPT4="--prefix-length=22-30 --v4-threshold=3/4"
IP2NET_OPT6="--prefix-length=56-64 --v6-threshold=5"
Настройка режима autohostlist.
При увеличении AUTOHOSTLIST_RETRANS_THRESHOLD и использовании nfqws следует пересмотреть значения параметров NFQWS_TCP_PKT_OUT и NFQWS_UDP_PKT_OUT. Все ретрансмиссии должны быть получены nfqws, иначе триггер "зависание запроса" не сработает.
AUTOHOSTLIST_RETRANS_THRESHOLD=3
AUTOHOSTLIST_FAIL_THRESHOLD=3
AUTOHOSTLIST_FAIL_TIME=60
AUTOHOSTLIST_DEBUG=0
Включить или выключить сжатие больших листов в скриптах ipset/*.sh.
GZIP_LISTS=1
Команда для перезагрузки ip таблиц фаервола.
Если не указано или пустое, выбирается автоматически ipset или ipfw при их наличии. На BSD системах с PF нет автоматической загрузки. Там нужно указать команду явно: pfctl -f /etc/pf.conf На более новых pfctl (есть в новых FreeBSD, нет в OpenBSD 6.8) можно дать команду загрузки только таблиц: pfctl -Tl -f /etc/pf.conf "-" означает отключение загрузки листов даже при наличии поддерживаемого backend.
LISTS_RELOAD="pfctl -f /etc/pf.conf"
LISTS_RELOAD=-
В openwrt существует сеть по умолчанию 'lan'. Только трафик с этой сети будет перенаправлен на tpws. Но возможно задать другие сети или список сетей:
OPENWRT_LAN="lan lan2 lan3"
В openwrt в качестве wan берутся интерфейсы, имеющие default route. Отдельно для ipv4 и ipv6. Это можно переопределить:
OPENWRT_WAN4="wan4 vpn"
OPENWRT_WAN6="wan6 vpn6"
Параметр INIT_APPLY_FW=1 разрешает init скрипту самостоятельно применять правила iptables.
При иных значениях или если параметр закомментирован, правила применены не будут.
Это полезно, если у вас есть система управления фаерволом, в настройки которой и следует прикрутить правила.
На openwrt неприменимо при использовании firewall3+iptables.
Следующие настройки не актуальны для openwrt:
Если ваша система работает как роутер, то нужно вписать названия внутренних и внешних интерфейсов:
IFACE_LAN=eth0
IFACE_WAN=eth1
IFACE_WAN6="henet ipsec0"
Несколько интерфейсов могут быть вписаны через пробел. Если IFACE_WAN6 не задан, то берется значение IFACE_WAN.
Importante
Настройка маршрутизации, маскарада и т.д. не входит в задачу zapret. Включаются только режимы, обеспечивающие перехват транзитного трафика. Возможно определить несколько интерфейсов следующим образом:
IFACE_LAN="eth0 eth1 eth2"
Если вы используете какую-то систему управления фаерволом, то она может вступать в конфликт с имеющимся скриптом запуска. При повторном применении правил она могла бы поломать настройки iptables от zapret. В этом случае правила для iptables должны быть прикручены к вашему фаерволу отдельно от запуска tpws или nfqws.
Следующие вызовы позволяют применить или убрать правила iptables отдельно:
/opt/zapret/init.d/sysv/zapret start_fw
/opt/zapret/init.d/sysv/zapret stop_fw
/opt/zapret/init.d/sysv/zapret restart_fw
А так можно запустить или остановить демоны отдельно от фаервола:
/opt/zapret/init.d/sysv/zapret start_daemons
/opt/zapret/init.d/sysv/zapret stop_daemons
/opt/zapret/init.d/sysv/zapret restart_daemons
nftables сводят практически на нет конфликты между разными системами управления, поскольку позволяют использовать независимые таблицы и хуки. Используется отдельная nf-таблица "zapret". Если ваша система ее не будет трогать, скорее всего все будет нормально.
Для nftables предусмотрено несколько дополнительных вызовов:
Посмотреть set-ы интерфейсов, относящихся к lan, wan и wan6. По ним идет завертывание трафика. А так же таблицу flow table с именами интерфейсов ingress hook.
/opt/zapret/init.d/sysv/zapret list_ifsets
Обновить set-ы интерфейсов, относящихся к lan, wan и wan6. Для традиционных linux список интерфейсов берется из переменных конфига IFACE_LAN, IFACE_WAN. Для openwrt определяется автоматически. Множество lanif может быть расширено параметром OPENWRT_LAN. Все интерфейсы lan и wan так же добавляются в ingress hook от flow table.
/opt/zapret/init.d/sysv/zapret reload_ifsets
Просмотр таблицы без содержимого set-ов. Вызывает nft -t list table inet zapret
/opt/zapret/init.d/sysv/zapret list_table
Так же возможно прицепиться своим скриптом к любой стадии применения и снятия фаервола со стороны zapret скриптов:
INIT_FW_PRE_UP_HOOK="/etc/firewall.zapret.hook.pre_up"
INIT_FW_POST_UP_HOOK="/etc/firewall.zapret.hook.post_up"
INIT_FW_PRE_DOWN_HOOK="/etc/firewall.zapret.hook.pre_down"
INIT_FW_POST_DOWN_HOOK="/etc/firewall.zapret.hook.post_down"
Эти настройки доступны в config. Может быть полезно, если вам нужно использовать nftables set-ы, например ipban / ipban6 . nfset-ы принадлежат только одной таблице, следовательно вам придется писать правила для таблицы zapret, а значит нужно синхронизироваться с применением/снятием правил со стороны zapret скриптов.
custom скрипты - это маленькие shell программы, управляющие нестандартными режимами применения zapret или частными случаями, которые не могут быть интегрированы в основную часть без загромождения и замусоривания кода. Для применеия custom следует помещать файлы в следующие директории в зависимости от вашей системы:
/opt/zapret/init.d/sysv/custom.d
/opt/zapret/init.d/openwrt/custom.d
/opt/zapret/init.d/macos/custom.d
Директория будет просканирована в алфавитном порядке, и каждый скрипт будет применен.
В init.d имеется custom.d.examples.linux , в init.d/macos - custom.d.examples . Это готовые скрипты, которые можно копировать в custom.d . Их можно взять за основу для написания собственных.
Для linux пишется код в функции
zapret_custom_daemons
zapret_custom_firewall
zapret_custom_firewall_nft
zapret_custom_firewall_nft_flush
Для macos
zapret_custom_daemons
zapret_custom_firewall_v4
zapret_custom_firewall_v6
zapret_custom_daemons поднимает демоны nfqws / tpws в нужном вам количестве и с нужными вам параметрами. В первом параметре передается код операции: 1 = запуск, 0 = останов. Схема запуска демонов в openwrt отличается - используется procd. Поэтому логика останова отсутствует за ненадобностью, останов никогда не вызывается.
zapret_custom_firewall поднимает и убирает правила iptables . В первом параметре передается код операции: 1 = запуск, 0 = останов.
zapret_custom_firewall_nft поднимает правила nftables. Логика останова отсутствует за ненадобностью. Стандартные цепочки zapret удаляются автоматически. Однако, sets и правила из ваших собственных цепочек не удаляются. Их нужно подчистить в zapret_custom_firewall_nft_flush. Если set-ов и собственных цепочек у вас нет, функцию можно не определять или оставить пустой.
Если вам не нужны iptables или nftables - можете не писать соответствующую функцию.
В linux можно использовать локальные переменные FW_EXTRA_PRE и FW_EXTRA_POST .
FW_EXTRA_PRE добавляет код к правилам ip/nf tables до кода, генерируемого функциями-хелперами.
FW_EXTRA_POST добавляет код после.
В linux функции-хелперы добавляют правило в начало цепочек, то есть перед уже имеющимися. Поэтому специализации должны идти после более общих вариантов. Для macos правило обратное. Там правила добавляются в конец. По этой же причине фаервол в Linux сначала применяется в стандартном режиме, потом custom, а в MacOS сначала custom, потом стандартный режим.
В macos firewall-функции ничего сами никуда не заносят. Их задача - лишь выдать текст в stdout, содержащий правила для pf-якоря. Остальное сделает обертка.
Особо обратите внимание на номер демона в функциях run_daemon , do_daemon , do_tpws , do_tpws_socks , do_nfqws , номера портов tpws и очередей nfqueue . Они должны быть уникальными во всех скриптах. При накладке будет ошибка. Поэтому используйте функции динамического получения этих значений из пула.
custom скрипты могут использовать переменные из config . Можно помещать в config свои переменные и задействовать их в скриптах. Можно использовать функции-хелперы. Они являются частью общего пространства функций shell. Полезные функции можно взять из примеров скриптов. Так же смотрите common/*.sh . Используя хелпер функции, вы избавитесь от необходимости учитывать все возможные случаи типа наличия/отсутствия ipv6, является ли система роутером, имена интерфейсов, ...Хелперы это учитывают. Вам нужно сосредоточиться лишь на фильтрах {ip,nf}tables и параметрах демонов.
install_easy.sh автоматизирует ручные варианты процедур установки. Он поддерживает OpenWRT, linux системы на базе systemd или openrc и MacOS.
Для более гибкой настройки перед запуском инсталлятора следует выполнить раздел "Выбор параметров".
Если система запуска поддерживается, но используется не поддерживаемый инсталлятором менеджер пакетов или названия пакетов не соответствуют прописанным в инсталлятор, пакеты нужно установить вручную. Всегда требуется curl. ipset - только для режима iptables , для nftables - не нужен.
Для совсем обрезанных дистрибутивов (alpine) требуется отдельно установить iptables и ip6tables , либо nftables .
В комплекте идут статические бинарники для большинства архитектур. Какой-то из них подойдет с вероятностью 99%. Но если у вас экзотическая система, инсталлятор попробует собрать бинарники сам через make. Для этого нужны gcc, make и необходимые -dev пакеты. Можно форсировать режим компиляции следующим вызовом:
install_easy.sh make
Под openwrt все уже сразу готово для использования системы в качестве роутера. Имена интерфейсов WAN и LAN известны из настроек системы. Под другими системами роутер вы настраиваете самостоятельно. Инсталлятор в это не вмешивается. инсталлятор в зависимости от выбранного режима может спросить LAN и WAN интерфейсы. Нужно понимать, что заворот проходящего трафика на tpws в прозрачном режиме происходит до выполнения маршрутизации, следовательно возможна фильтрация по LAN и невозможна по WAN. Решение о завороте на tpws локального исходящего трафика принимается после выполнения маршрутизации, следовательно ситуация обратная: LAN не имеет смысла, фильтрация по WAN возможна. Заворот на nfqws происходит всегда после маршрутизации, поэтому к нему применима только фильтрация по WAN. Возможность прохождения трафика в том или ином направлении настраивается вами в процессе конфигурации роутера.
Деинсталляция выполняется через uninstall_easy.sh . После выполнения деинсталляции можно удалить каталог /opt/zapret .
Работает только если у вас на роутере достаточно места.
Копируем zapret на роутер в /tmp .
Запускаем установщик:
sh /tmp/zapret/install_easy.sh
Он скопирует в /opt/zapret только необходимый минимум файлов.
После успешной установки можно удалить zapret из tmp для освобождения RAM:
rm -r /tmp/zapret
Для более гибкой настройки перед запуском инсталлятора следует выполнить раздел "Выбор параметров".
Система простой инсталяции заточена на любое умышленное или неумышленное изменение прав доступа на файлы. Устойчива к репаку под windows. После копирования в /opt права будут принудительно восстановлены.
Требуется около 120-200 кб на диске. Придется отказаться от всего, кроме tpws .
Инструкция для openwrt 22 и выше с nftables
Никаких зависимостей устанавливать не нужно.
Instalación:
init.d/openwrt-minimal/tpws/* в корень openwrt./usr/bin/tpws .chmod 755 /etc/init.d/tpws /usr/bin/tpws/etc/config/tpws/etc/nftables.d/90-tpws.nft и закомментируйте строки с редиректом ipv6./etc/init.d/tpws enable/etc/init.d/tpws startfw4 restartПолное удаление:
/etc/init.d/tpws disable/etc/init.d/tpws stoprm -f /etc/nftables.d/90-tpws.nft /etc/firewall.user /etc/init.d/tpws /usr/bin/tpwsfw4 restartИнструкция для openwrt 21 и ниже с iptables
Установите зависимости:
opkg updateopkg install iptables-mod-extraopkg install ip6tables-mod-nat Убедитесь, что в /etc/firewall.user нет ничего значимого. Если есть - не следуйте слепо инструкции. Объедините код или создайте свой firewall include в /etc/config/firewall .
Instalación:
init.d/openwrt-minimal/tpws/* в корень openwrt./usr/bin/tpws .chmod 755 /etc/init.d/tpws /usr/bin/tpws/etc/config/tpws/etc/init.d/tpws enable/etc/init.d/tpws startfw3 restartПолное удаление:
/etc/init.d/tpws disable/etc/init.d/tpws stoprm -f /etc/nftables.d/90-tpws.nft /etc/firewall.user /etc/init.d/tpwstouch /etc/firewall.userfw3 restart Без рута забудьте про nfqws и tpws в режиме transparent proxy. tpws будет работать только в режиме --socks .
Ядра Android имеют поддержку NFQUEUE. nfqws работает.
В стоковых ядрах нет поддержки ipset. В общем случае сложность задачи по поднятию ipset варьируется от "не просто" до "почти невозможно". Если только вы не найдете готовое собранное ядро под ваш девайс.
tpws будет работать в любом случае, он не требует чего-либо особенного.
Хотя linux варианты под Android работают, рекомендуется использовать специально собранные под bionic бинарники. У них не будет проблем с DNS, с локальным временем и именами юзеров и групп.
Рекомендуется использовать gid 3003 (AID_INET). Иначе можете получить permission denied на создание сокета. Например: --uid 1:3003
В iptables укажите: ! --uid-owner 1 вместо ! --uid-owner tpws .
Напишите шелл скрипт с iptables и tpws, запускайте его средствами вашего рут менеджера. Скрипты автозапуска лежат тут:
magisk : /data/adb/service.d
supersu: /system/su.d
nfqws может иметь такой глюк. При запуске с uid по умолчанию (0x7FFFFFFF) при условии работы на сотовом интерфейсе и отключенном кабеле внешнего питания система может частично виснуть. Перестает работать тач и кнопки, но анимация на экране может продолжаться. Если экран был погашен, то включить его кнопкой power невозможно. Изменение UID на низкий (--uid 1 подойдет) позволяет решить эту проблему. Глюк был замечен на android 8.1 на девайсе, основанном на платформе mediatek.
Ответ на вопрос куда поместить tpws на android без рута, чтобы потом его запускать из приложений. Файл заливаем через adb shell в /data/local/tmp/, лучше всего в субфолдер.
mkdir /data/local/tmp/zapret
adb push tpws /data/local/tmp/zapret
chmod 755 /data/local/tmp/zapret /data/local/tmp/zapret/tpws
chcon u:object_r:system_file:s0 /data/local/tmp/zapret/tpws
Как найти стратегию обхода сотового оператора: проще всего раздать инет на комп. Для этого подойдет любая поддерживаемая ОС. Подключите android через USB кабель к компу и включите режим модема. Прогоните стандартную процедуру blockcheck. При переносе правил на телефон уменьшить TTL на 1, если правила с TTL присутствуют в стратегии. Если проверялось на windows, убрать параметры --wf-* .
Работа blockcheck в android shell не поддерживается, но имея рута можно развернуть rootfs какого-нибудь дистрибутива linux. Это лучше всего делать с компа через adb shell. Если компа нет, то развертка chroot - единственный вариант, хотя и неудобный. Подойдет что-то легковесное, например, alpine или даже openwrt. Если это не эмулятор android, то универсальная архитектура - arm (любой вариант). Если вы точно знаете, что ОС у вас 64-разрядная, то лучше вместо arm - aarch64. Выяснить архитектуру можно командой uname -a .
mount --bind /dev /data/linux/dev
mount --bind /proc /data/linux/proc
mount --bind /sys /data/linux/sys
chroot /data/linux
Первым делом вам нужно будет один раз настроить DNS. Сам он не заведется.
echo nameserver 1.1.1.1 >/etc/resolv.conf
Далее нужно средствами пакетного менеджера установить iptables-legacy. Обязательно НЕ iptables-nft, который, как правило, присутствует по умолчанию. В ядре android нет nftables.
ls -la $(which iptables)
Линк должен указывать на legacy вариант. Если нет, значит устанавливайте нужные пакеты вашего дистрибутива, и убеждайтесь в правильности ссылок.
iptables -S
Так можно проверить, что ваш iptables увидел то, что туда насовал android. iptables-nft выдаст ошибку. Далее качаем zapret в /opt/zapret . Обычные действия с install_prereq.sh , install_bin.sh , blockcheck.sh .
Учтите, что стратегии обхода сотового оператора и домашнего wifi вероятно будут разные. Выделить сотового оператора легко через параметр iptables -o <имя интерфейса> . Имя может быть, например, ccmni0 . Его легко увидеть через ifconfig . Wifi сеть - обычно wlan0 .
Переключать blockcheck между оператором и wifi можно вместе со всем инетом - включив или выключив wifi. Если найдете стратегию для wifi и впишите ее в автостарт, то при подключении к другому wifi она может не сработать или вовсе что-то поломать, потому подумайте стоит ли. Может быть лучше сделать скрипты типа "запустить обход домашнего wifi", "снять обход домашнего wifi", и пользоваться ими по необходимости из терминала. Но домашний wifi лучше все-же обходить на роутере.
Устройства типа E3372, E8372, E5770 разделяют общую идеологию построения системы. Имеются 2 вычислительных ядра. Одно ядро выполняет vxworks, другое - linux. На 4pda имеются модифицированные прошивки с telnet и adb. Их и нужно использовать.
Дальнейшие утверждения проверены на E8372. На других может быть аналогично или похоже. Присутствуют дополнительные аппаратные блоки для offload-а сетевых функций. Не весь трафик идет через linux. Исходящий трафик с самого модема проходит цепочку OUTPUT нормально, на FORWARD =>wan часть пакетов выпадает из tcpdump.
tpws работает обычным образом.
nfqueue поломан, можно собрать фиксящий модуль https://github.com/im-0/unfuck-nfqueue-on-e3372h, используя исходники с huawei open source. Исходники содержат тулчейн и полусобирающееся, неактуальное ядро. Конфиг можно взять с рабочего модема из /proc/config.gz . С помощью этих исходников умельцы могут собрать модуль unfuck_nfqueue.ko . После его применения NFQUEUE и nfqws для arm работают нормально.
Чтобы избежать проблемы с offload-ом при использовании nfqws, следует комбинировать tpws в режиме tcp proxy и nfqws. Правила NFQUEUE пишутся для цепочки OUTPUT. connbytes придется опускать, поскольку модуля в ядре нет. Но это не смертельно.
Скрипт автозапуска - /system/etc/autorun.sh . Создайте свой скрипт настройки zapret, запускайте из конца autorun.sh через "&". Скрипт должен в начале делать sleep 5, чтобы дождаться поднятия сети и iptables от huawei.
Advertencia
На этом модеме происходят хаотические сбросы соединений tcp по непонятным причинам. Выглядит это так, если запускать curl с самого модема:
curl www.ru
curl: (7) Failed to connect to www.ru port 80: Host is unreachable
Возникает ошибка сокета EHOSTUNREACH (errno -113). То же самое видно в tpws. В броузере не подгружаются части веб страниц, картинки, стили. В tcpdump на внешнем интерфейсе eth_x виден только единственный и безответный SYN пакет, без сообщений ICMP. ОС каким-то образом узнает о невозможности установить TCP соединение и выдает ошибку. Если выполнять подключение с клиента, то SYN пропадают, соединение не устанавливается. ОС клиента проводит ретрансмиссию, и с какого-то раза подключение удается. Поэтому без tcp проксирования в этой ситуации сайты тупят, но загружаются, а с проксированием подключение выполняется, но вскоре сбрасывается без каких-либо данных, и броузеры не пытаются установить его заново. Поэтому качество броузинга с tpws может быть хуже, но дело не в tpws. Частота сбросов заметно возрастает, если запущен торент клиент, имеется много tcp соединений. Однако, причина не в переполнении таблицы conntrack. Увеличение лимитов и очистка conntrack не помогают. Предположительно эта особенность связана с обработкой пакетов сброса соединения в hardware offload. Точного ответа на вопрос у меня нет. Если вы знаете - поделитесь, пожалуйста. Чтобы не ухудшать качество броузинга, можно фильтровать заворот на tpws по ip фильтру. Поддержка ipset отсутствует. Значит, все, что можно сделать - создать индивидуальные правила на небольшое количество хостов.
Некоторые наброски скриптов присутствуют в files/huawei. Не готовое решение! Смотрите, изучайте, приспосабливайте.
Здесь можно скачать готовые полезные статические бинарники для arm, включая curl : https://github.com/bol-van/bins
Описано в документации BSD
Описано в документации Windows
Для статических бинариков не имеет значения на чем они запущены: PC, android, приставка, роутер, любой другой девайс. Подойдет любая прошивка, дистрибутив linux. Статические бинарники запустятся на всем. Им нужно только ядро с необходимыми опциями сборки или модулями. Но кроме бинариков в проекте используются еще и скрипты, в которых задействуются некоторые стандартные программы.
Основные причины почему нельзя просто так взять и установить эту систему на что угодно:
Если в вашей прошивке есть все необходимое, то вы можете адаптировать zapret под ваш девайс в той или иной степени. Может быть у вас не получится поднять все части системы, однако вы можете хотя бы попытаться поднять tpws и завернуть на него через -j REDIRECT весь трафик на порт 80. Если вам есть куда записать tpws, есть возможность выполнять команды при старте, то как минимум это вы сделать сможете. Скорее всего поддержка REDIRECT в ядре есть. Она точно есть на любом роутере, на других устройствах под вопросом. NFQUEUE, ipset на большинстве прошивок отсутствуют из-за ненужности.
Пересобрать ядро или модули для него будет скорее всего достаточно трудно. Для этого вам необходимо будет по крайней мере получить исходники вашей прошивки. User mode компоненты могут быть привнесены относительно безболезненно, если есть место куда их записать. Специально для девайсов, имеющих область r/w, существует проект entware. Некоторые прошивки даже имеют возможность его облегченной установки через веб интерфейс. entware содержит репозиторий user-mode компонент, которые устанавливаются в /opt. С их помощью можно компенсировать недостаток ПО основной прошивки, за исключением ядра.
Можно попытаться использовать sysv init script таким образом, как это описано в разделе "Прикручивание к системе управления фаерволом или своей системе запуска". В случае ругани на отсутствие каких-то базовых программ, их следует восполнить посредством entware. Перед запуском скрипта путь к дополнительным программам должен быть помещен в PATH.
Подробное описание настроек для других прошивок выходит за рамки данного проекта.
Openwrt является одной из немногих относительно полноценных linux систем для embedded devices. Она характеризуется следующими вещами, которые и послужили основой выбора именно этой прошивк:
Если не работает автономный обход, приходится перенаправлять трафик через сторонний хост. Предлагается использовать прозрачный редирект через socks5 посредством iptables+redsocks , либо iptables+iproute+vpn . Настройка варианта с redsocks на openwrt описана в redsocks.txt. Настройка варианта с iproute+wireguard - в wireguard_iproute_openwrt.txt.
VPS - это виртуальный сервер. Существует огромное множество датацентров, предлагающих данную услугу. На VPS могут выполняться какие угодно задачи. От простого веб сайта до навороченной системы собственной разработки. Можно использовать VPS и для поднятия собственного vpn или прокси. Сама широта возможных способов применения, распространенность услуги сводят к минимуму возможности регуляторов по бану сервисов такого типа. Да, если введут белые списки, то решение загнется, но это будет уже другая реальность, в которой придется изобретать иные решения. Пока этого не сделали, никто не будет банить хостинги просто потому, что они предоставляют хостинг услуги. Вы как индивидуум скорее всего никому не нужны. Подумайте чем вы отличаетесь от известного VPN провайдера. VPN провайдер предоставляет простую и доступную услугу по обходу блокировок для масс. Этот факт делает его первоочередной целью блокировки. РКН направит уведомление, после отказа сотрудничать заблокирует VPN. Предоплаченная сумма пропадет. У регуляторов нет и никогда не будет ресурсов для тотальной проверки каждого сервера в сети. Возможен китайский расклад, при котором DPI выявляет vpn протоколы и динамически банит IP серверов, предоставляющих нелицензированный VPN. Но имея знания, голову, вы всегда можете обфусцировать vpn трафик или применить другие типы VPN, более устойчивые к анализу на DPI или просто менее широкоизвестные, а следовательно с меньшей вероятностью обнаруживаемые регулятором. У вас есть свобода делать на вашем VPS все что вы захотите, адаптируясь к новым условиям. Да, это потребует знаний. Вам выбирать учиться и держать ситуацию под контролем, когда вам ничего запретить не могут, или покориться системе.
VPS можно прибрести в множестве мест. Существуют специализированные на поиске предложений VPS порталы.
Например, вот этот. Для персонального VPN сервера обычно достаточно самой минимальной конфигурации, но с безлимитным трафиком или с большим лимитом по трафику (терабайты). Важен и тип VPS. Openvz подойдет для openvpn, но вы не поднимете на нем wireguard, ipsec, то есть все, что требует kernel mode. Для kernel mode требуется тип виртуализации, предполагающий запуск полноценного экземпляра ОС linux вместе с ядром. Подойдут kvm, xen, hyper-v, vmware.
По цене можно найти предложения, которые будут дешевле готовой VPN услуги, но при этом вы сам хозяин в своей лавке и не рискуете попасть под бан регулятора, разве что "заодно" под ковровую бомбардировку с баном миллионов IP. Кроме того, если вам совсем все кажется сложным, прочитанное вызывает ступор и вы точно знаете, что ничего из описанного сделать не сможете, то вы сможете хотя бы использовать динамическое перенаправление портов ssh для получения шифрованного socks proxy и прописать его в броузер. Знания linux не нужны совсем. Это вариант наименее напряжный для чайников, хотя и не самый удобный в использовании.
USDT
0x3d52Ce15B7Be734c53fc9526ECbAB8267b63d66E
BTC
bc1qhqew3mrvp47uk2vevt5sctp7p2x9m7m5kkchve