Zapret ist frei und Open Source. Jeder, der Sie zwingt, Zapret nur aus seiner Ressource herunterzuladen, muss Links, Videos und Dateien gelöscht und diese Anforderungen des Urheberrechts rechtfertigen, selbst verstößt gegen die Lizenz.
Autonomes Gegensatz von DPI, für das keine Server Dritter angeschlossen werden müssen. Es kann dazu beitragen, die Schlösser oder die Verzögerung von Stellen HTTP (s), der signaturalen Analyse der TCP- und UDP -Protokolle, beispielsweise zum Zweck der Blockierung des VPN zu umgehen.
Das Projekt richtet sich in erster Linie auf einbettete Geräte mit niedriger Leistung - Router, die unter OpenWrt arbeiten. Traditionelle Linux -Systeme, FreeBSD, OpenBSD, teilweise macOS werden unterstützt. In einigen Fällen ist unabhängig die Lösung für verschiedene Firmware möglich.
Der größte Teil der Funktionalität funktioniert unter Windows.
Im einfachsten Fall haben Sie es mit einem passiven DPI zu tun. Passive DPI kann den Verkehr aus dem Stream lesen, seine Pakete injizieren, können jedoch keine Pakete blockieren. Wenn die Anfrage "schlecht" ist, ist die passive DPI -Injektion des RST -Pakets und ergänzt es optional mit dem HTTP -Umleitungspaket. Wenn das gefälschte Paket nur für den Client injiziert wird, können Sie in diesem Fall die Befehle iptables für den Tropfen von RST und/oder um den Stecker nach bestimmten Bedingungen umleiten, die für jeden Anbieter einzeln ausgewählt werden müssen. Wir gehen also um die Folgen des Abläufers des Abzugs. Wenn ein passiver DPI das RST -Paket einschließlich des Servers leitet, können Sie nichts dagegen tun. Ihre Aufgabe ist es, den Trigger des Abzugs für den Abzug zu verhindern. Iptables allein werden nicht auskommen. Dieses Projekt zielt genau darauf ab, das Verbot zu verhindern und seine Folgen nicht zu beseitigen.
Der aktive DPI wird in einen Einschnitt des Kabels platziert und kann Pakete gemäß allen Kriterien fallen lassen, einschließlich der Erkennung von TCP -Strömen und Blockieren von Paketen, die zum Fluss gehören.
Wie verhindern Sie den Auslöser für das Verbot des Verbots? Senden Sie etwas, auf das DPI nicht zählt und das der Algorithmus zum Erkennen von Anfragen und deren Blockierung ihn bricht.
Einige DPI können die HTTP -Anforderung nicht erkennen, wenn sie in TCP -Segmente unterteilt ist. Zum Beispiel eine Anfrage des Typs GET / HTTP/1.1rnHost: kinozal.tv...... Wir senden 2 Teile Host: : Zuerst gibt es GET , dann / HTTP/1.1rnHost: kinozal.tv..... host: An einigen Stellen wird nach der Methode eine zusätzliche Lücke hinzufügen: GET / => GET / ODER EINEN Punkt am Ende des Hostnamens: Host: kinozal.tv.
Es gibt auch fortgeschrittenere Magie, die darauf abzielt, DPI auf einer Paketebene zu überwinden.
Lesen Sie mehr über DPI:
https://habr.com/en/post/335436 oder https://web.archive.org/web/2023033123644/https://habr.com/en/post/335436/
https://geneva.cs.umd.edu/papers/geneva_ccs19.pdf
Zuvor wurde vor der Einführung universeller TSPU -Systeme ein Zoo verschiedener DPIs für Anbieter verwendet. Einige waren aktiv, eine Art passiv. Jetzt ist die Zeit einfacher Iptables endlich weg. Überall gibt es eine aktive DPI -TSPU, aber an einigen Stellen kann zusätzliche alte DPI aus dem Zoo unnötig bleiben. In diesem Fall müssen Sie mehrere DPIs gleichzeitig umgehen. Immer mehr anvertraute Schlösser werden, über die Sie nur durch die Tatsache der Unzugänglichkeit von etwas lernen werden, dies liegt nicht in den Listen. Gerinseln einiger IP -Adressen werden verwendet (autonomer Bypass ist unmöglich) und Protokolle (VPN). Einige IP -Bereiche verwenden einen strengeren Filter, der Versuche zum Betrügen durch Segmentierung erkennt. Dies muss auf einige Dienste zurückzuführen sein, die versuchen, DPI auf diese Weise zu täuschen.
Kurz gesagt, die Optionen können nach dem folgenden Schema klassifiziert werden:
Für die Optionen 2 und 3 werden TPWS- und NFQWS -Programme implementiert. Damit sie arbeiten können, muss sie mit den gewünschten Parametern ausführen und einen bestimmten Verkehr durch Iptables oder NFTabale zu ihnen umleiten.
Dieses Programm ist ein Paketmodifikator und der NFQueue -Warteschlangenhandler. Für BSD -Systeme gibt es eine angepasste Version - DVTWS, die aus denselben Quellen gesammelt wurde (siehe BSD -Dokumentation).
@<config_file>|$<config_file> ; читать конфигурацию из файла. опция должна быть первой. остальные опции игнорируются.
--debug=0|1 ; 1=выводить отладочные сообщения
--dry-run ; проверить опции командной строки и выйти. код 0 - успешная проверка.
--comment ; любой текст (игнорируется)
--daemon ; демонизировать прогу
--pidfile=<file> ; сохранить PID в файл
--user=<username> ; менять uid процесса
--uid=uid[:gid] ; менять uid процесса
--qnum=N ; номер очереди N
--bind-fix4 ; пытаться решить проблему неверного выбора исходящего интерфейса для сгенерированных ipv4 пакетов
--bind-fix6 ; пытаться решить проблему неверного выбора исходящего интерфейса для сгенерированных ipv6 пакетов
--wsize=<winsize>[:<scale_factor>] ; менять tcp window size на указанный размер в SYN,ACK. если не задан scale_factor, то он не меняется (устарело !)
--wssize=<winsize>[:<scale_factor>] ; менять tcp window size на указанный размер в исходящих пакетах. scale_factor по умолчанию 0. (см. conntrack !)
--wssize-cutoff=[n|d|s]N ; изменять server window size в исходящих пакетах (n), пакетах данных (d), относительных sequence (s) по номеру меньше N
--ctrack-timeouts=S:E:F[:U] ; таймауты внутреннего conntrack в состояниях SYN, ESTABLISHED, FIN, таймаут udp. по умолчанию 60:300:60:60
--hostcase ; менять регистр заголовка "Host:" по умолчанию на "host:".
--hostnospace ; убрать пробел после "Host:" и переместить его в конец значения "User-Agent:" для сохранения длины пакета
--methodeol ; добавить перевод строки в unix стиле ('n') перед методом и убрать пробел из Host: : "GET / ... Host: domain.com" => "nGET / ... Host:domain.com"
--hostspell=HoST ; точное написание заголовка Host (можно "HOST" или "HoSt"). автоматом включает --hostcase
--domcase ; домен после Host: сделать таким : TeSt.cOm
--dpi-desync=[<mode0>,]<mode>[,<mode2] ; атака по десинхронизации DPI. mode : synack syndata fake fakeknown rst rstack hopbyhop destopt ipfrag1 multisplit multidisorder fakedsplit fakeddisorder ipfrag2 udplen tamper
--dpi-desync-fwmark=<int|0xHEX> ; бит fwmark для пометки десинхронизирующих пакетов, чтобы они повторно не падали в очередь. default = 0x40000000
--dpi-desync-ttl=<int> ; установить ttl для десинхронизирующих пакетов
--dpi-desync-ttl6=<int> ; установить ipv6 hop limit для десинхронизирующих пакетов. если не указано, используется значение ttl
--dpi-desync-autottl=[<delta>[:<min>[-<max>]]] ; режим auto ttl для ipv4 и ipv6. по умолчанию: 1:3-20. delta=0 отключает функцию.
--dpi-desync-autottl6=[<delta>[:<min>[-<max>]]] ; переопределение предыдущего параметра для ipv6
--dpi-desync-fooling=<fooling> ; дополнительные методики как сделать, чтобы фейковый пакет не дошел до сервера. none md5sig badseq badsum datanoack hopbyhop hopbyhop2
--dpi-desync-repeats=<N> ; посылать каждый генерируемый в nfqws пакет N раз (не влияет на остальные пакеты)
--dpi-desync-skip-nosni=0|1 ; 1(default)=не применять dpi desync для запросов без hostname в SNI, в частности для ESNI
--dpi-desync-split-pos=N|-N|marker+N|marker-N ; список через запятую маркеров для tcp сегментации в режимах split и disorder
--dpi-desync-split-seqovl=N|-N|marker+N|marker-N ; единичный маркер, определяющий величину перекрытия sequence в режимах split и disorder. для split поддерживается только положительное число.
--dpi-desync-split-seqovl-pattern=<filename>|0xHEX ; чем заполнять фейковую часть overlap
--dpi-desync-fakedsplit-pattern=<filename>|0xHEX ; чем заполнять фейки в fakedsplit/fakeddisorder
--dpi-desync-badseq-increment=<int|0xHEX> ; инкремент sequence number для badseq. по умолчанию -10000
--dpi-desync-badack-increment=<int|0xHEX> ; инкремент ack sequence number для badseq. по умолчанию -66000
--dpi-desync-any-protocol=0|1 ; 0(default)=работать только по http request и tls clienthello 1=по всем непустым пакетам данных
--dpi-desync-fake-http=<filename>|0xHEX ; файл, содержащий фейковый http запрос для dpi-desync=fake, на замену стандартному www.iana.org
--dpi-desync-fake-tls=<filename>|0xHEX ; файл, содержащий фейковый tls clienthello для dpi-desync=fake, на замену стандартному
--dpi-desync-fake-unknown=<filename>|0xHEX ; файл, содержащий фейковый пейлоад неизвестного протокола для dpi-desync=fake, на замену стандартным нулям 256 байт
--dpi-desync-fake-syndata=<filename>|0xHEX ; файл, содержащий фейковый пейлоад пакета SYN для режима десинхронизации syndata
--dpi-desync-fake-quic=<filename>|0xHEX ; файл, содержащий фейковый QUIC Initial
--dpi-desync-fake-dht=<filename>|0xHEX ; файл, содержащий фейковый пейлоад DHT протокола для dpi-desync=fake, на замену стандартным нулям 64 байт
--dpi-desync-fake-unknown-udp=<filename>|0xHEX ; файл, содержащий фейковый пейлоад неизвестного udp протокола для dpi-desync=fake, на замену стандартным нулям 64 байт
--dpi-desync-udplen-increment=<int> ; насколько увеличивать длину udp пейлоада в режиме udplen
--dpi-desync-udplen-pattern=<filename>|0xHEX ; чем добивать udp пакет в режиме udplen. по умолчанию - нули
--dpi-desync-start=[n|d|s]N ; применять dpi desync только в исходящих пакетах (n), пакетах данных (d), относительных sequence (s) по номеру больше или равно N
--dpi-desync-cutoff=[n|d|s]N ; применять dpi desync только в исходящих пакетах (n), пакетах данных (d), относительных sequence (s) по номеру меньше N
--hostlist=<filename> ; действовать только над доменами, входящими в список из filename. поддомены автоматически учитываются.
; в файле должен быть хост на каждой строке.
; список читается при старте и хранится в памяти в виде иерархической структуры для быстрого поиска.
; при изменении времени модификации файла он перечитывается автоматически по необходимости
; список может быть запакован в gzip. формат автоматически распознается и разжимается
; списков может быть множество. пустой общий лист = его отсутствие
; хосты извлекаются из Host: хедера обычных http запросов и из SNI в TLS ClientHello.
--hostlist-domains=<domain_list> ; фиксированный список доменов через зяпятую. можно использовать # в начале для комментирования отдельных доменов.
--hostlist-exclude=<filename> ; не применять дурение к доменам из листа. может быть множество листов. схема аналогична include листам.
--hostlist-exclude-domains=<domain_list> ; фиксированный список доменов через зяпятую. можно использовать # в начале для комментирования отдельных доменов.
--hostlist-auto=<filename> ; обнаруживать автоматически блокировки и заполнять автоматический hostlist (требует перенаправления входящего трафика)
--hostlist-auto-fail-threshold=<int> ; сколько раз нужно обнаружить ситуацию, похожую на блокировку, чтобы добавить хост в лист (по умолчанию: 3)
--hostlist-auto-fail-time=<int> ; все эти ситуации должны быть в пределах указанного количества секунд (по умолчанию: 60)
--hostlist-auto-retrans-threshold=<int> ; сколько ретрансмиссий запроса считать блокировкой (по умолчанию: 3)
--hostlist-auto-debug=<logfile> ; лог положительных решений по autohostlist. позволяет разобраться почему там появляются хосты.
--new ; начало новой стратегии (новый профиль)
--skip ; не использовать этот профиль . полезно для временной деактивации профиля без удаления параметров.
--filter-l3=ipv4|ipv6 ; фильтр версии ip для текущей стратегии
--filter-tcp=[~]port1[-port2]|* ; фильтр портов tcp для текущей стратегии. ~ означает инверсию. установка фильтра tcp и неустановка фильтра udp запрещает udp. поддерживается список через запятую.
--filter-udp=[~]port1[-port2]|* ; фильтр портов udp для текущей стратегии. ~ означает инверсию. установка фильтра udp и неустановка фильтра tcp запрещает tcp. поддерживается список через запятую.
--filter-l7=[http|tls|quic|wireguard|dht|unknown] ; фильтр протокола L6-L7. поддерживается несколько значений через запятую.
--ipset=<filename> ; включающий ip list. на каждой строчке ip или cidr ipv4 или ipv6. поддерживается множество листов и gzip. перечитка автоматическая.
--ipset-ip=<ip_list> ; фиксированный список подсетей через запятую. можно использовать # в начале для комментирования отдельных подсетей.
--ipset-exclude=<filename> ; исключающий ip list. на каждой строчке ip или cidr ipv4 или ipv6. поддерживается множество листов и gzip. перечитка автоматическая.
--ipset-exclude-ip=<ip_list> ; фиксированный список подсетей через запятую. можно использовать # в начале для комментирования отдельных подсетей.
--debug können Sie ein detailliertes Protokoll von Aktionen für die Konsole, in Syslog oder in eine Datei anzeigen. Das Verfahren zur Befolgung der Optionen kann wichtig sein. --debug ist am besten am Anfang angegeben. Optionen werden nacheinander analysiert. Wenn der Fehler die Option überprüft und der Fall die --debug noch nicht erreicht hat, werden die Nachrichten nicht in der Datei oder des Syslogs angezeigt. Bei der Anmeldung in der Datei hält der Prozess die Datei nicht geöffnet. Aus Gründen jeder Aufzeichnung öffnet sich die Datei und schließt sich dann. Die Datei kann also jederzeit gelöscht werden und wird bei der ersten Nachricht im Protokoll erneut erstellt. Denken Sie jedoch daran, dass Sie, wenn Sie den Prozess unter der Wurzel starten, durch UID durch Nicht-Root ersetzt werden. Am Anfang ändert sich die Datei im Protokoll, andernfalls ist die Aufzeichnung unmöglich. Wenn Sie dann die Datei löschen und der Vorgang nicht das Recht hat, eine Datei in seinem Verzeichnis zu erstellen, wird das Protokoll nicht mehr durchgeführt. Anstatt zu entfernen, ist es besser, Truncate zu verwenden. In Shel kann dies über den Befehl ":> Dateiname" erfolgen
Seine Essenz ist wie folgt. Eine ursprüngliche Anfrage wird gestellt, geändert, gefälschte Informationen (Fälschungen) werden hinzugefügt, damit das Server -Betriebssystem die ursprüngliche Anforderung unverändert an den Serverprozess überträgt, und der DPI hat eine andere. Die Tatsache, dass er nicht blockieren wird. Der Server sieht eine Sache, DPI ist eine andere. DPI versteht nicht, dass die verbotene Anfrage übertragen wird und sie nicht blockiert.
Es gibt ein Arsenal an Möglichkeiten, ein solches Ergebnis zu erzielen. Dies kann die Übertragung gefälschter Pakete sein, damit sie DPI erreichen, aber den Server nicht erreichen. Die Fragmentierung auf TCP -Ebene (Segmentierung) oder auf IP -Ebene kann verwendet werden. Es gibt Angriffe, die auf dem Spiel mit TCP -Sequenznummern oder mit einer verwirrenden Reihenfolge der TCP -Segmente basieren. Methoden können in verschiedenen Versionen kombiniert werden.
Fälschungen sind separate NFQWS -Pakete, die falsche Informationen für DPI enthalten. Sie sollten entweder den Server nicht erreichen oder können, aber sie müssen ihnen verworfen werden. Andernfalls ist die Aufschlüsselung der TCP -Verbindung oder Verstoß gegen die Integrität des übertragenen Flusses, der garantiert die Ressource durchbricht. Es gibt eine Reihe von Methoden, um dieses Problem zu lösen.
md5sig fügt die TCP -MD5 -Signaturoption hinzu. Es funktioniert nicht auf allen Servern. MD5 -Pakete werden normalerweise nur Linux verworfen.badsum verderbt die Kontrollmenge von TCP. Es funktioniert nicht, wenn Ihr Gerät für NAT ist, was keine Taschen mit einem Rollstuhl verpasst. Die häufigste Einrichtung des Routers Nat in Linux vermisst sie nicht. Die meisten Home -Router basieren auf Linux. Die Verschachtelung ist wie folgt sichergestellt: SYSSCTL -Tuning standardmäßig net.netfilter.nf_conntrack_checksum=1 lässt ConnTrack die TCP- und UDP -Kasse von eingehenden Paketen überprüfen und den Status für Pakete mit einem Rollstuhl ungültig festlegen. Normalerweise wird in den Iptables -Regeln eine Regel für Paketentropfen mit Ungültigem in der Vorwärtskette eingefügt. Eine gemeinsame Kombination dieser Faktoren führt zu einem Mangel an Badsum durch einen solchen Router. In OpenWRT aus dem Getriebe net.netfilter.nf_conntrack_checksum=0 gibt es oft keine anderen Router, und dies kann nicht immer geändert werden. Damit NFQWs einen Router durcharbeiten, müssen Sie den angegebenen SYSCTL -Wert auf 0 festlegen. NFQWS auf dem Router selbst funktioniert ohne diese Konfiguration, da der Chexumma der lokal erstellten Pakete nie überprüft wird. Wenn der Router zum Beispiel den Anbieter nach einem anderen NAT und keine ungültigen Pakete verpasst, können Sie nichts dagegen tun. Aber normalerweise vermissen Anbieter immer noch Badsum. Bei einigen Adaptern/Sweatshirts/Treibern, Rx-Checksum-Offload, müssen Badsum-Pakete vor dem Erhalt des Betriebssystems entfernt werden. Wenn etwas getan werden kann, modifizieren Sie in diesem Fall nur den Treiber, der extrem nicht trivial zu sein scheint. Es wurde festgestellt, dass sich einige Router auf der Grundlage von MediaTek so verhalten. Badsum-Pakete verlassen das Kundenbetrieb, aber der Router ist in Br-Lan nicht über TCPDump zu sehen. Wenn NFQWS am Router selbst durchgeführt wird, kann der Bypass funktionieren. Badsum verlassen normalerweise die externe Schnittstelle.badseq erhöht die TCP -Sequenzzahl auf einen bestimmten Wert und zieht damit sie aus dem TCP -Fenster zurück. Solche Pakete werden wahrscheinlich vom empfangenden Knoten verworfen, aber auch von DPI, wenn es sich auf Sequenznummern konzentriert. Standardmäßig wird die SEQ -Verschiebung -10000 ausgewählt. Die Übung hat gezeigt, dass einige DPIs den SEQ außerhalb eines bestimmten Fensters nicht verpassen. Eine so kleine Verschiebung kann jedoch Probleme mit einem signifikanten Streaming und einem erheblichen Verlust von Paketen verursachen. Wenn Sie --dpi-desync-any-protocol verwenden, müssen Sie möglicherweise den Badseq-Inkrement 0x80000000 installieren. Dies bietet eine zuverlässige Garantie dafür, dass ein gefälschtes Paket nicht in das TCP -Fenster auf dem Server eingeschnitten wird. Es wurde auch festgestellt, dass Badseq während der HTTP -Analyse die Logik einiger DPI bricht und das Einfrieren der Verbindung verursacht. Darüber hinaus funktioniert auf dem gleichen DPI -TLS mit Badseq einwandfrei.TTL schien die beste Option zu sein, erfordert jedoch für jeden Anbieter eine individuelle Abstimmung. Wenn der DPI weiter als die lokalen Standorte des Anbieters ist, können Sie den Zugriff auf sie abschneiden. Die Situation wird durch das Vorhandensein von TSPU auf den Autobahnen verschärft, was TTL dazu zwingt, TTL ziemlich hoch zu machen, wodurch das Risiko einer Aufschlüsselung der Fälschung auf den Server erhöht wird. IP -Ausschlussliste ist erforderlich, manuell ausgefüllt. Zusammen mit TTL können Sie MD5SIG verwenden. Dies wird nichts verderben, sondern gibt eine gute Chance, Websites zu bearbeiten, auf die die "schlechte" Tasche TTL erreichen wird. Wenn Sie keine automatische Lösung finden, verwenden Sie die Datei zapret-hosts-user-exclude.txt . Einige Aktienfirmware der Router beheben die ausgehenden TTL, ohne diese Option zu trennen, sie werden sie nicht durcharbeiten. Was ist es wert, TTL auszuwählen: Finden Sie den Mindestwert, bei dem der Bypass noch funktioniert. Dies wird die Anzahl Ihres DPI -Hops sein.hopbyhop bezieht sich nur auf IPv6. IPv6 erweitert Header hop-by-hop options . In der Version von hopbyhop2 werden 2 Hedere hinzugefügt, was ein Verstoß gegen den Standard darstellt und durch den Protokollstapel in allen Betriebssystemen garantiert verworfen wird. Ein Heder-Hop-für-Hop wird von allen Betriebssystemen akzeptiert, aber auf einigen Kanälen/Anbietern können solche Pakete gefiltert und nicht erreicht werden. Die Berechnung bestehtdatanoack sendet Fälschungen mit einem ACK -TCP -Flag. Die Server werden nicht akzeptiert und DPI kann akzeptieren. Diese Technik kann NAT brechen und funktioniert nicht immer mit Iptables, wenn Masquarade auch aus dem lokalen System verwendet wird (fast immer auf IPv4 -Routern). Auf den Systemen ohne Masquarade und Nftables funktioniert es ohne Einschränkungen. Es wurde experimentell festgestellt, dass viele Anbieter Nat diese Pakete nicht verwerfen, daher funktioniert es auch mit dem internen Anbieter IP. Aber es wird keine Linux -NAT passieren, so dass diese Technik höchstwahrscheinlich nicht hinter dem Heimrouter arbeitet, aber sie kann davon funktionieren. Es kann einen Router durcharbeiten, wenn die Verbindung verbunden ist, und auf dem Router wird die Hardwarebeschleunigung eingeschaltet.autottl . Die Essenz des Regimes in der automatischen Definition von TTL, so dass es mit ziemlicher Sicherheit DPI übergibt und den Server nicht ein wenig erreicht. Die Grundwerte von TTL 64.128.255 werden aufgenommen, das eingehende Paket sieht aus (ja, es ist erforderlich, das erste eingehende Paket auf NFQWS zu lenken!). Die Länge der Spur wird berechnet, delta wird genommen (1 standardmäßig). Wenn TTL außerhalb des Bereichs (min, max - 3,20 standardmäßig) liegt, werden max, max, in den Bereich passen. Wenn die resultierende TTL größer als die Länge des Pfades ist, funktionierte der Automatismus nicht und die festen TTL -Werte für den Angriff werden erstellt. Mit der Technik können Sie die Frage lösen, wann das gesamte Netzwerk nach Möglichkeit durch Barrieren (DPI, TSPU), einschließlich Autobahnen, blockiert wird. Aber möglicherweise scheitern. Zum Beispiel mit der Asymmetrie eines eingehenden und ausgehenden Kanals an einen bestimmten Server. Bei einigen Anbietern wird diese Technik gut funktionieren, bei anderen wird es mehr Probleme als nützen. Irgendwo kann es die Abstimmung von Parametern benötigen. Es ist besser, mit einem zusätzlichen Limiter zu verwenden. Distriktmodi können in Kombinationen kombiniert werden. --dpi-desync-fooling führt viele Werte durch ein Komma.
multisplit . Wir haben die Anfrage an die in --dpi-desync-split-pos angegebenen Positionen abgestimmt.multidisorder . Wir schneiden die Anfrage an die in --dpi-desync-split-pos angegebenen Positionen und senden umgekehrte Reihenfolge.fakedsplit . Wir haben die Anfrage nach 2 Teilen geschnitten und jeden Teil mit Fälschungen gestrichen: Fälschung des 1. Teils, 1 Teil, Fälschung des 1. Teils, Fälschung des 2. Teils, 2. Teil, Fälschung des 2. Teilsfakeddisorder . Ähnlich wie bei fakedsplit , nur in umgekehrter Reihenfolge: Fälschung des 2. Teils, 2 Teil, Fälschung des 2. Teils, Fälschung des 1. Teils, 1 Teil, gefälschter 1 Teil. Der Inhalt der Fälschungen in fakedsplit / fakeddisorder wird durch den Parameter --dpi-desync-fakedsplit-pattern (Standard 0x00) bestimmt. Diese Fälschungen werden aus dem Muster mit einer Verschiebung entnommen, die der Verschiebung der genannten Teile entspricht. Die Größen der Fälschungen entsprechen den Längen der gesendeten Teile. Der Zweck dieser Modi ist es, die Identifizierung von Originaldaten zwischen Fälschungen zu komplizieren.
Um die Schnittpositionen zu bestimmen, werden Marker verwendet.
Relative Positionen:
--methodeol verschieben. Dann kann die Position 1 oder 2 sein. Ein Beispiel für eine Liste von Markierungen: 100,midsld,sniext+1,endhost-2,-10 .
Beim Brechen des Pakets sind die Auflösungsmarker als erstes - alle diese relativen Positionen und die Verwendung von Verschiebungen zu finden. Wenn im aktuellen Protokoll eine relative Position fehlt, werden solche Positionen nicht angewendet und verworfen. Anschließend besteht eine Normalisierung von Positionen bezüglich der Vertreibung des aktuellen Pakets in der Paketgruppe (z. Alle Positionen, die über die Grenzen des aktuellen Pakets hinausgehen, werden herausgeworfen. Die verbleibenden werden zu einer Erhöhung der Duplizierung sortiert. In den Varianten von multisplit und multidisorder wenn keine einzige Position übrig ist.
fakedsplit und fakeddisorder -Optionen verwenden nur eine geteilte Position. Ihre Suche in der Liste --dpi-desync-split-pos wird auf besondere Weise durchgeführt. Zunächst werden alle relativen Marker überprüft. Wenn ein geeignetes unter ihnen zu finden ist, wird es verwendet. Andernfalls werden alle absoluten Marker überprüft. Wenn unter ihnen nichts gefunden wird, wird Position 1 angewendet.
Beispielsweise können Sie --dpi-desync-split-pos=method+2,midsld,5 schreiben. Wenn das HTTP -Protokoll, befindet sich der Zusammenbruch in der Position der method+2 . Wenn das TLS -Protokoll in midsld ist. Wenn das Protokoll unbekannt und inklusive --dpi-desync-any-protocol ist, ist die Aufschlüsselung in Position 5. Um alles eindeutiger zu machen, können Sie verschiedene Profile für verschiedene Protokolle verwenden und nur eine Position angeben, die definitiv in diesem Protokoll ist.
seqovl fügt seqovl zu Beginn eines der TCP -Segmente mit Sequenznummer hinzu, die in seqovl verdrängt wurden. Für split - zu Beginn des ersten Segments, für disorder - zu Beginn des vorletzten Segments (der zweite in der ursprünglichen folgenden Reihenfolge).
Im Falle von split liegt die Berechnung auf der Tatsache, dass die vorherige Referenz, falls dies der Fall war, bereits in den Coquet der Serveranwendung eingegeben wurde, sodass der neue, der angekommen ist, nur teilweise innerhalb des aktuellen Fensters (In-Window) liegt. Vorne wird der gefälschte Teil verworfen, und der Rest dessen enthält das Original und beginnt mit dem Beginn des Fensters, so dass er in den Sockel eintritt. Die Serveranwendung empfängt alles, was der Client wirklich sendet, und verworfen den gefälschten Teil des Windows. DPI kann dies jedoch nicht verstehen, also hat er eine Sequenzdessinchronisation. Es ist unbedingt erforderlich, dass das erste Segment mit seqovl die Länge der MTU nicht überschreitet. Diese Situation wird in Linux automatisch erkannt und seqovl wird abgesagt. In anderen Systemen wird die Situation nicht erkannt, und dies wird zu einer Aufschlüsselung der Verbindung führen. Wählen Sie daher die erste geteilte Position und seqovl aus, damit MTU in keinem Fall überschritten wird. Andernfalls kann die Spiritualisierung nicht nach dem Zufallsprinzip funktionieren oder funktioniert.
Bei einer Überlappung disorder geht es zum vorletzten Teil des Pakets. Der Einfachheit halber gehen wir davon aus, dass die Division in 2 Teile geht, sie werden in der Reihenfolge "2 1" mit der ursprünglichen Bestellung "1 2" in Ordnung sein. Es ist notwendig, dass seqovl geringer ist als die Position der ersten Spaltung, ansonsten wird alles, was gesendet wird, sofort in den Sockel übertragen, einschließlich Fälschung, wobei das Protokoll der angewendeten Ebene gebrochen wird. Diese Situation kann durch das Programm leicht erkennen und seqovl wird abgesagt. Eine Erhöhung der Größe des Pakets ist grundsätzlich unmöglich. Vorbehaltlich der Bedingung des zweiten Teils des Pakets ist das Paket vollständig in der Windows, sodass das Server-Betriebssystem es vollständig akzeptiert, einschließlich der Fälschung. Da jedoch der erste Teil der Daten von 1 Pack 1 Pack noch nicht angewendet wurde, bleiben die gefälschten und realen Daten im Nucleus -Speicher, ohne zur Serveranwendung zu gehen. Sobald der erste Teil des Pakets kommt, schreibt es den gefälschten Teil im Nucleus -Gedächtnis um. Der Kern erhält Daten aus 1 und 2 Teilen, so dass die Anwendung an den Anwendungsbuchsen gesendet wird. Dies ist das Verhalten aller UNIX -Betriebssysteme mit Ausnahme von Solaris, die letzten angewandten Daten zu lassen. Windows hinterlässt alte Daten, sodass eine Störung mit seqovl zu Verstärkungen führt, wenn sie mit Windows -Servern arbeiten. Solaris ist fast tot, es gibt nur sehr wenige Windows -Server. Sie können bei Bedarf Blätter verwenden. Die Methode ermöglicht es Ihnen, zu verzichten, ohne zu täuschen und zu ttl. Fälschungen werden mit echten Daten gemischt. fakedsplit/fakeddisorder fügt immer noch zusätzliche separate Fälschungen hinzu.
seqovl in der split Version kann nur ein absoluter positiver Wert sein, da sie nur im ersten Paket verwendet wird. In der disorder sind alle Markieroptionen zulässig. Sie normalisieren sich automatisch auf das aktuelle Paket in der Serie. Sie können auf midsld weben und auf midsld-1 Seqovl herstellen.
hopbyhop , destopt und ipfrag1 -Desinghronisierungsmodi (nicht zu verwechseln mit dem Follooling!) Beziehen Sie sich nur auf IPv6 und besteht darin, die hop-by-hop options , destination options oder fragment in allen Paketen hinzuzufügen, die unter Desinchronisation fallen. Hier ist es notwendig zu verstehen, dass die Zugabe eines Headers die Größe des Pakets erhöht und daher nicht auf Pakete der maximalen Größe angewendet werden kann. Dies ist bei der Übertragung großer Nachrichten der Fall. Wenn es unmöglich ist, das Paket zu senden, wird der Geist des Geistes abgesagt, das Paket wird im Original ausgeschlossen. ipv6 Berechnung besteht Daher wird es nicht verstehen, dass es TCP oder UDP ist und ein Paket ohne Analyse verpasst. Vielleicht wird es ein DPI kaufen. Es kann mit allen Modi der 2. Phase kombiniert werden, mit Ausnahme ipfrag1+ipfrag2 -Option. Zum Beispiel bedeutet hopbyhop,multisplit das TCP-Paket in mehrere Segmente zu unterteilen, und fügen Sie jedem von ihnen Hop-by-Hop hinzu. Mit hopbyhop,ipfrag2 wird die Header-Sequenz: ipv6,hop-by-hop , fragment , tcp/udp sein. Der ipfrag1 -Modus funktioniert möglicherweise nicht immer ohne besondere Vorbereitung. Siehe Abschnitt IP фрагментация .
Im DPI-DeSync-Parameter können Sie über ein Komma bis zu 3 Modi angeben.
synack , syndata , --wsize , --wssize . Die Filter auf Hostlist arbeiten nicht in dieser Phase.fake , rst , rstack .fakedsplit oder ipfrag2 ).Die Modi erfordern Angabe in der Reihenfolge der Zunahme der Phasenzahlen.
Es gibt DPIs, die die Antworten vom Server analysieren, insbesondere ein Zertifikat von ServerHello, in dem die Domänen registriert sind. Die Bestätigung der Clienthello -Zustellung ist ein ACK -Serverpaket mit ACK -Sequenz, das der Länge von ClientHello+1 entspricht. In der Störungsversion steht normalerweise zuerst eine Teilbestätigung (Sack), dann ein vollständiger ACK. Wenn es anstelle von ACK oder Sack ein erstklassiges Paket mit einer Mindestverzögerung gibt, schneidet DPI Sie in der Phase Ihrer Anfrage ab. Wenn der erste Mal nach einer Verzögerung dem Ping zum Server eine vollständige ACK nachgeht, reagiert der DPI wahrscheinlich auf die Serverantwort. DPI kann hinter dem Stream zurückbleiben, wenn ClientHello ihn erfüllt und nicht Serverhello überprüfen kann. Dann hast du Glück. Die gefälschte Option kann funktionieren. Wenn er Serverhello nicht hinterher zurückbleibt und hartnäckig überprüft, können Sie versuchen, den Server zu zwingen, Serverhello in Teilen über den Parameter -WSSIZE zu senden (siehe ConnTrack). Wenn dies nicht hilft, ist es unwahrscheinlich, dass etwas ohne Hilfe vom Server tut. Die beste Lösung besteht darin, TLS 1.3 -Unterstützung auf dem Server zu aktivieren. Darin wird das Serverzertifikat in verschlüsselter Form übertragen. Dies ist eine Empfehlung für alle Administratoren blockierter Websites. Schalten Sie TLS 1.3 ein. Sie geben also mehr Möglichkeiten, DPI zu überwinden.
In der Genfer -Dokumentation wird dies als "TCB Turnaround" bezeichnet. Ein Versuch, die DPI in Bezug auf die Rollen eines Clients und eines Servers irrezuführen.
Da der Modus gegen die Arbeit von NAT verstößt, kann die Ausrüstung nur dann funktionieren, wenn kein NAT zwischen dem Angriffsgerät und der DPI besteht. Der Angriff wird nicht durch einen Router funktionieren, aber er kann daraus funktionieren. Um einen Angriff auf den Verkehr, das Nftables und das Postnat -Schema durchzuführen, sind erforderlich.
Hier ist alles einfach. Daten werden zum Syn -Paket hinzugefügt. Alle Betriebssysteme ignorieren sie, wenn TCP Fast Open (TFO) nicht verwendet wird, und DPI kann ohne Verständnis erkennen, dort TFO zu essen oder nicht. Ursprüngliche Verbindungen mit TFO berühren nicht, da dies sie definitiv brechen wird. Ohne ein klarer Parameter werden 16 Null -Bytes hinzugefügt.
Von der Innenseite von VM von VirtualBox und VMware in NAT funktionieren viele NFQWS -Pakettechniken im NAT -Modus nicht. TTL wird gewaltsam ersetzt, gefälschte Pakete passieren nicht. Sie müssen das Netzwerk im Brückenmodus konfigurieren.
NFQWS ist mit einer begrenzten Implementierung von Tracking -TCP -Verbindungen ausgestattet. Es wird für die Implementierung einiger Methoden zur Bekämpfung von DPI eingeschaltet. ANCONTRACK ist in der Lage, die Verbindungsphase zu überwachen: Syn, festgelegt, flossen, die Anzahl der Pakete in jede Richtung, Sequenznummern. ACKRACKER kann mit beiden Taschen oder nur in eine Richtung "füttern". Die Verbindung gibt die Tabelle ein, wenn Sie Pakete mit Flags finden, die von Syn oder Syn, ACK eingestellt sind. Wenn Sie ConnTrack benötigen, sollte die Verbindung in den Iptables -Umleitungsregeln aus dem allerersten Paket zu NFQWs gehen, obwohl sie den Connbytes -Filter durchbrechen kann. Für UDP ist der Initiator, in die Tabelle zu gelangen, das erste UDP -Paket. Es bestimmt auch die Richtung des Flusses. Es wird angenommen, dass das erste UDP -Paket vom Client zum Server kommt. Als nächstes werden alle Pakete mit übereinstimmenden src_ip,src_port,dst_ip,dst_port als vor dem Ablauf der Inaktivitätszeit zu diesem Fluss angehören. ConnTrack ist einfach, es wurde nicht unter Berücksichtigung aller Arten von Angriffen auf die Verbindung geschrieben. Es wird nicht die Pakete auf die Gültigkeit der Sequenznummern oder des Tschokumms überprüft. Seine Aufgabe besteht nur darin, die Bedürfnisse von NFQWs aufrechtzuerhalten, sondern in der Regel nur vom ausgehenden Verkehr aufgenommen, daher ist sie unempfindlich gegenüber Ersatzlagen aus dem externen Netzwerk. Die Verbindung wird aus der Tabelle entfernt, sobald die Notwendigkeit, sie zu verfolgen, oder in einem inaktiven Timout verschwindet. Für jede Phase der Verbindung gibt es separate Zeitüberschreitungen. Sie können durch den Parameter --ctrack-timeouts geändert werden.
--wssize können Sie die Größe des TCP-Fensters für den Server vom Client ändern, damit er die folgenden Antworten auf Teile sendet. Damit sich dies auf das gesamte Server -Betriebssystem auswirkt, muss die Fenstergröße in jedem Paket geändert werden, bevor die Nachricht gesendet wird. Die Antwort sollte aufgeteilt werden (z. B. TLS ClientHello). Deshalb ist es notwendig zu wissen, wann man aufhören soll. Wenn Sie nicht ständig ein niedriges WSSize -Unternehmen anhalten und installieren, fällt die Geschwindigkeit katastrophal. In Linux kann dies durch Connbytes gestoppt werden, aber in BSD -Systemen gibt es keine solche Möglichkeit. Im Fall von HTTP (s) halten wir sofort nach dem Versenden der ersten HTTP -Anfrage oder TLS ClientHello an. Wenn Sie sich mit nicht mit HTTP (s) befassen, benötigen Sie einen Parameter --wssize-cutoff . Es legt die Grenze fest, aus der die WSSIZE -Aktion aufhört. Präfix D Bevor die Nummer nur Pakete mit Datennutzlast, Präfix S - Relative Sequenznummer bedeutet, mit anderen Worten, die Anzahl der vom Client + 1 übertragenen Bytes. Wenn das Paket mit der HTTP -Anforderung oder TLS -ClientLol ohne Warten auf WSSIZE -CUTOFF gestoppt wird. Wenn Ihr Protokoll für eine lange Untätigkeit anfällig ist, wird die festgelegte Phase durch --ctrack-timeouts erhöht. Der Standard ist niedrig - nur 5 Minuten. Vergessen Sie nicht, dass NFQWS auf Paketen füttert, indem Sie darauf kommen. Wenn Sie die Einnahme von Paketen durch Connbytes eingeschränkt haben, kann die Tabelle in der festgelegten Phase aufgehängte Verbindungen bleiben, die nur durch Timout abfallen. Um ConnTrack zu diagnostizieren, senden Sie das Sigusr1 -Signal an NFQWS: killall -SIGUSR1 nfqws . Die aktuelle Tabelle wird von NFQWS in STDOut angezeigt.
Normalerweise bezieht sich der Client im SYN -Paket zusätzlich zur Fenstergröße auch TCP scaling factor . Der Skalierungsfaktor ist der Grad der Deuce, der mit der Fenstergröße multipliziert wird: 0 => 1, 1 => 2, 2 => 4, ..., 8 => 256, ... im WSSIZE -Skalierungsfaktorparameter wird durch den Dickdarm angegeben. Der Skalierungsfaktor kann nur abnehmen, die Erhöhung wird blockiert, um zu verhindern, dass die Fenstergröße vom Server überschreitet. Um den Server zur Fragmentierung von ServerHello zu zwingen, um die Löschung des Servernamens aus dem Serverzertifikat auf DPI zu vermeiden, verwenden Sie am besten --wssize=1:6 . Die Hauptregel ist, scale_factor so weit wie möglich zu erstellen, so dass nach der Wiederherstellung der Fenstergröße die endgültige Größe des Fensters wie möglich wird. Wenn Sie 64: 0 machen, ist es sehr langsam. Andererseits ist es unmöglich, dass die Antwort des Servers groß genug ist, damit DPI das gewünschte dort findet.
--wssize funktioniert nicht in Profilen mit Hostlisten, da es von Anfang an von Beginn der Verbindung wirkt, wenn es immer noch unmöglich ist, sich für den Einstieg in das Blatt zu entscheiden. Das Profil mit automatischer Hostlist kann jedoch -wssize enthalten. --wssize kann die Geschwindigkeit verlangsamen und/oder die Reaktionszeit der Standorte erhöhen. Wenn es also andere Arbeitsmethoden zur Umgehung von DPI gibt, ist es besser, sie zu verwenden.
--dpi-desync-cutoff ermöglicht es Ihnen, das Grenzwert festzulegen, wenn der DPI-DeSync erreicht ist. Präfixe N, D, S sind nach Analogie C --wssize-cutoff erhältlich. Nützlich zusammen mit --dpi-desync-any-protocol=1 . Bei den Verbindungen, die für Untätigkeit anfällig sind, sollten Conntrack Timeouts geändert werden. Wenn die Verbindung aus ConnTrack gefallen ist und die Option --dpi-desync-cutoff eingestellt ist, wird dpi desync nicht angewendet.
NFQWS unterstützt das Zusammenbau einiger Arten von Anfragen. Im Moment sind dies TLS und Quic ClientHello. Sie sind lang, wenn Sie die Kryptographie nach der Quantum von TLS-kyber in Chrome einbeziehen und normalerweise 2 oder 3 Pakete belegen. Kyber ist standardmäßig eingeschaltet, beginnend mit Chromum 124. Chrom wird durch TLS -Fingerabgeschwindigkeit randomisiert. SNI kann sowohl am Anfang als auch am Ende sein, dh in jedes Paket einsteigen. Staatliche DPI stellt die Anfrage normalerweise vollständig zusammen und entscheidet dann nur eine Entscheidung über das Blockieren. In the case of obtaining a TLS or QUIC package with a partial Clienthello, the assembly process begins, and the packages are delayed and are not sent until its end. At the end of the assembly, the package passes through the desynchronization on the basis of the fully collected Clienthello. In case of any error during the assembly process, the detained packages are immediately sent to the network, and the desinchronization is canceled.
Есть специальная поддержка всех вариантов tcp сплита для многосегментного TLS. Если указать позицию сплита больше длины первого пакета, то разбивка происходит не обязательно первого пакета, а того, на который пришлась итоговая позиция. Если, допустим, клиент послал TLS ClientHello длиной 2000, SNI начинается с 1700, и заданы опции fake,multisplit , то перед первым пакетом идет fake, затем первый пакет в оригинале, а последний пакет разбивается на 2 сегмента. В итоге имеем фейк в начале и 3 реальных сегмента.
Атаки на udp более ограничены в возможностях. udp нельзя фрагментировать иначе, чем на уровне ip. Для UDP действуют только режимы десинхронизации fake , hopbyhop , destopt , ipfrag1 , ipfrag2 , udplen , tamper . Возможно сочетание fake , hopbyhop , destopt с ipfrag2 , fake , fakeknown с udplen и tamper. udplen увеличивает размер udp пакета на указанное в --dpi-desync-udplen-increment количество байтов. Паддинг заполняется нулями по умолчанию, но можно задать свой паттерн. Предназначено для обмана DPI, ориентирующегося на размеры пакетов. Может сработать, если пользовательский протокол не привязан жестко к размеру udp пейлоада. Режим tamper означает модификацию пакетов известных протоколов особенным для протокола образом. На текущий момент работает только с DHT. Поддерживается определение пакетов QUIC Initial с расшифровкой содержимого и имени хоста, то есть параметр --hostlist будет работать. Определяются пакеты wireguard handshake initiation и DHT (начинается с 'd1', кончается 'e'). Для десинхронизации других протоколов обязательно указывать --dpi-desync-any-protocol . Реализован conntrack для udp. Можно пользоваться --dpi-desync-cutoff. Таймаут conntrack для udp можно изменить 4-м параметром в --ctrack-timeouts . Атака fake полезна только для stateful DPI, она бесполезна для анализа на уровне отдельных пакетов. По умолчанию fake наполнение - 64 нуля. Можно указать файл в --dpi-desync-fake-unknown-udp .
Современная сеть практически не пропускает фрагментированные tcp на уровне ip. На udp с этим дело получше, поскольку некоторые udp протоколы могут опираться на этот механизм (IKE старых версий). Однако, кое-где бывает, что режут и фрагментированный udp. Роутеры на базе linux могут самопроизвольно собирать или перефрагментировать пакеты. Позиция фрагментации задается отдельно для tcp и udp. По умолчанию 24 и 8 соответственно, должна быть кратна 8. Смещение считается с транспортного заголовка.
Существует ряд моментов вокруг работы с фрагментами на Linux, без понимания которых может ничего не получиться.
ipv4 : Linux дает отсылать ipv4 фрагменты, но стандартные настройки iptables в цепочке OUTPUT могут вызывать ошибки отправки.
ipv6 : Нет способа для приложения гарантированно отослать фрагменты без дефрагментации в conntrack. На разных системах получается по-разному. Где-то нормально уходят, где-то пакеты дефрагментируются. Для ядер <4.16 похоже, что нет иного способа решить эту проблему, кроме как выгрузить модуль nf_conntrack , который подтягивает зависимость nf_defrag_ipv6 . Он то как раз и выполняет дефрагментацию. Для ядер 4.16+ ситуация чуть лучше. Из дефрагментации исключаются пакеты в состоянии NOTRACK. Чтобы не загромождать описание, смотрите пример решения этой проблемы в blockcheck.sh .
Иногда требуется подгружать модуль ip6table_raw с параметром raw_before_defrag=1 . В openwrt параметры модулей указываются через пробел после их названий в файлах /etc/modules.d . В традиционных системах посмотрите используется ли iptables-legacy или iptables-nft . Если legacy, то нужно создать файл /etc/modprobe.d/ip6table_raw.conf с содержимым :
options ip6table_raw raw_before_defrag=1
В некоторых традиционных дистрибутивах можно изменить текущий ip6tables через : update-alternatives --config ip6tables Если вы хотите оставаться на iptables-nft, вам придется пересобрать патченную версию. Патч совсем небольшой. В nft.c найдите фрагмент:
{
.name = "PREROUTING",
.type = "filter",
.prio = -300, /* NF_IP_PRI_RAW */
.hook = NF_INET_PRE_ROUTING,
},
{
.name = "OUTPUT",
.type = "filter",
.prio = -300, /* NF_IP_PRI_RAW */
.hook = NF_INET_LOCAL_OUT,
},
и замените везде -300 на -450.
Это нужно сделать вручную, никакой автоматики в blockcheck.sh нет.
Либо можно раз и навсегда избавиться от этой проблемы, используя nftables . Там можно создать netfilter hook с любым приоритетом. Используйте приоритет -401 и ниже.
При использовании iptables и NAT, похоже, что нет способа прицепить обработчик очереди после NAT. Пакет попадает в nfqws с source адресом внутренней сети, затем фрагментируется и уже не обрабатывается NAT. Так и уходит во внешюю сеть с src ip 192.168.xx Следовательно, метод не срабатывает. Видимо единственный рабочий метод - отказаться от iptables и использовать nftables. Хук должен быть с приоритетом 101 или выше.
nfqws способен по-разному реагировать на различные запросы и применять разные стратегии дурения. Это реализовано посредством поддержки множества профилей дурения. Профили разделяются в командной строке параметром --new . Первый профиль создается автоматически. Для него не нужно --new . Каждый профиль имеет фильтр. По умолчанию он пуст, то есть профиль удовлетворяет любым условиям. Фильтр может содержать жесткие параметры: версия ip протокола, ipset и порты tcp/udp. Они всегда однозначно идентифицируются даже на нулевой фазе десинхронизации, когда еще хост и L7 неизвестны. В качестве мягкого фильтра могут выступать хост-листы и протокол прикладного уровня (l7). L7 протокол становится известен обычно после первого пакета с данными. При поступлении запроса идет проверка профилей в порядке от первого до последнего до достижения первого совпадения с фильтром. Жесткие параметры фильтра сверяются первыми. При несовпадении идет сразу же переход к следующему профилю. Если какой-то профиль удовлетворяет жесткому фильтру и L7 фильтру и содержит авто-хостлист, он выбирается сразу. Если профиль удовлетворяет жесткому фильтру и L7 фильтру, для него задан хостлист, и у нас еще нет имени хоста, идет переход к следующему профилю. В противном случае идет проверка по хостлистам этого профиля. Если имя хоста удовлетворяет листам, выбирается этот профиль. Иначе идет переход к следующему. Может так случиться, что до получения имени хоста или узнавания L7 протокола соединение идет по одному профилю, а при выяснении этих параметров профиль меняется на лету. Это может произойти даже дважды - при выяснении L7 и имени хоста. Чаще всего это выяснение совмещается в одно действие, поскольку по одному пакету как правило узнается и L7, и хост. Поэтому если у вас есть параметры дурения нулевой фазы, тщательно продумывайте что может произойти при переключении стратегии. Смотрите debug log, чтобы лучше понять что делает nfqws. Нумерация профилей идет с 1 до N. Последним в цепочке создается пустой профиль с номером 0. Он используется, когда никакие условия фильтров не совпали.
Wichtig
Множественные стратегии создавались только для случаев, когда невозможно обьединить имеющиеся стратегии для разных ресурсов. Копирование стратегий из blockcheck для разных сайтов во множество профилей без понимания как они работают приведет к нагромождению параметров, которые все равно не покроют все возможные заблокированные ресурсы. Вы только увязните в этой каше.
Wichtig
user-mode реализация ipset создавалась не как удобная замена *nix версии, реализованной в ядре. Вариант в ядре работает гораздо эффективнее. Это создавалось для систем без подержки ipset в ядре. Конкретно - Windows и ядра Linux, собранные без nftables и ipset модулей ядра. Например, в android нет ipset.
iptables для задействования атаки на первые пакеты данных в tcp соединении :
iptables -t mangle -I POSTROUTING -o <внешний_интерфейс> -p tcp -m multiport --dports 80,443 -m connbytes --connbytes-dir=original --connbytes-mode=packets --connbytes 1:6 -m mark ! --mark 0x40000000/0x40000000 -j NFQUEUE --queue-num 200 --queue-bypass
Этот вариант применяем, когда DPI не следит за всеми запросами http внутри keep-alive сессии. Если следит, направляем только первый пакет от https и все пакеты от http :
iptables -t mangle -I POSTROUTING -o <внешний_интерфейс> -p tcp --dport 443 -m connbytes --connbytes-dir=original --connbytes-mode=packets --connbytes 1:6 -m mark ! --mark 0x40000000/0x40000000 -j NFQUEUE --queue-num 200 --queue-bypass
iptables -t mangle -I POSTROUTING -o <внешний_интерфейс> -p tcp --dport 80 -m mark ! --mark 0x40000000/0x40000000 -j NFQUEUE --queue-num 200 --queue-bypass
mark нужен, чтобы сгенерированный поддельный пакет не попал опять к нам на обработку. nfqws выставляет fwmark при его отсылке. хотя nfqws способен самостоятельно различать помеченные пакеты, фильтр в iptables по mark нужен при использовании connbytes, чтобы не допустить изменения порядка следования пакетов. Процессинг очереди - процесс отложенный. Если ядро имеет пакеты на отсылку вне очереди - оно их отправляет незамедлительно. Изменение правильного порядка следования пакетов при десинхронизации ломает всю идею. Так же были замечены дедлоки при достаточно большой отсылке пакетов из nfqws и отсутствии mark фильтра. Процесс может зависнуть. Поэтому наличие фильтра по mark в ip/nf tables можно считать обязательным.
Почему --connbytes 1:6 :
Для режима autottl необходимо перенаправление входящего SYN,ACK пакета или первого пакета соединения (что обычно есть тоже самое). Для режима autohostlist необходимы входящие RST и http redirect. Можно построить фильтр на tcp flags для выделения SYN,ACK и модуле u32 для поиска характерных паттернов http redirect, но проще использовать connbytes для выделения нескольких начальных входящих пакетов.
iptables -t mangle -I PREROUTING -i <внешний интерфейс> -p tcp -m multiport --sports 80,443 -m connbytes --connbytes-dir=reply --connbytes-mode=packets --connbytes 1:3 -m mark ! --mark 0x40000000/0x40000000 -j NFQUEUE --queue-num 200 --queue-bypass
Для quic :
iptables -t mangle -I POSTROUTING -o <внешний_интерфейс> -p udp --dport 443 -m connbytes --connbytes-dir=original --connbytes-mode=packets --connbytes 1:6 -m mark ! --mark 0x40000000/0x40000000 -j NFQUEUE --queue-num 200 --queue-bypass
6 пакетов берется, чтобы покрыть случаи возможных ретрансмиссий quic initial в случае плохой связи или если сервер плохо себя чувствует, а приложение настаивает именно на quic, не переходя на tcp. А так же для работы autohostlist по quic. Однако, autohostlist для quic не рекомендуется.
Можно начать с базовой конфигурации.
IFACE_WAN=wan
nft create table inet ztest
nft add chain inet ztest post "{type filter hook postrouting priority mangle;}"
nft add rule inet ztest post oifname $IFACE_WAN meta mark and 0x40000000 == 0 tcp dport "{80,443}" ct original packets 1-6 queue num 200 bypass
nft add rule inet ztest post oifname $IFACE_WAN meta mark and 0x40000000 == 0 udp dport 443 ct original packets 1-6 queue num 200 bypass
# auto hostlist with avoiding wrong ACK numbers in RST,ACK packets sent by russian DPI
sysctl net.netfilter.nf_conntrack_tcp_be_liberal=1
nft add chain inet ztest pre "{type filter hook prerouting priority filter;}"
nft add rule inet ztest pre iifname $IFACE_WAN tcp sport "{80,443}" ct reply packets 1-3 queue num 200 bypass
Для задействования IP фрагментации и datanoack на проходящие пакеты требуется особая конфигурация цепочек, перенаправляющая пакеты после NAT. В скриптах zapret эта схема называется POSTNAT , и она возможна только на nftables. Сгенерированные nfqws пакеты требуется на раннем этапе помечать как notrack , чтобы они не были испорчены NAT.
IFACE_WAN=wan
nft create table inet ztest
nft add chain inet ztest postnat "{type filter hook postrouting priority srcnat+1;}"
nft add rule inet ztest postnat oifname $IFACE_WAN meta mark and 0x40000000 == 0 tcp dport "{80,443}" ct original packets 1-6 queue num 200 bypass
nft add rule inet ztest postnat oifname $IFACE_WAN meta mark and 0x40000000 == 0 udp dport 443 ct original packets 1-6 queue num 200 bypass
nft add chain inet ztest predefrag "{type filter hook output priority -401;}"
nft add rule inet ztest predefrag "mark & 0x40000000 != 0x00000000 notrack"
Удаление тестовой таблицы :
nft delete table inet ztest
Если ваше устройство поддерживает аппаратное ускорение (flow offloading, hardware nat, hardware acceleration), то iptables могут не работать. При включенном offloading пакет не проходит по обычному пути netfilter. Необходимо или его отключить, или выборочно им управлять.
В новых ядрах присутствует software flow offloading (SFO). Пакеты, проходящие через SFO, так же проходят мимо большей части механизмов iptables. При включенном SFO работает DNAT/REDIRECT (tpws). Эти соединения исключаются из offloading. Однако, остальные соединения идут через SFO, потому NFQUEUE будет срабатывать только до помещения соединения в flowtable. Практически это означает, что почти весь функционал nfqws работать не будет. Offload включается через специальный target в iptables FLOWOFFLOAD . Не обязательно пропускать весь трафик через offload. Можно исключить из offload соединения, которые должны попасть на tpws или nfqws. openwrt не предусматривает выборочного управления offload. Поэтому скрипты zapret поддерживают свою систему выборочного управления offload в openwrt.
iptables target FLOWOFFLOAD - это проприетарное изобретение openwrt. Управление offload в nftables реализовано в базовом ядре linux без патчей.
tpws - это transparent proxy.
@<config_file>|$<config_file> ; читать конфигурацию из файла. опция должна быть первой. остальные опции игнорируются.
--debug=0|1|2|syslog|@<filename> ; 0,1,2 = логирование на косоль : 0=тихо, 1(default)=подробно, 2=отладка.
--debug-level=0|1|2 ; указать уровень логирования для syslog и @<filename>
--dry-run ; проверить опции командной строки и выйти. код 0 - успешная проверка.
--daemon ; демонизировать прогу
--pidfile=<file> ; сохранить PID в файл
--user=<username> ; менять uid процесса
--uid=uid[:gid] ; менять uid процесса
--bind-addr ; на каком адресе слушать. может быть ipv4 или ipv6 адрес
; если указан ipv6 link local, то требуется указать с какого он интерфейса : fe80::1%br-lan
--bind-linklocal=no|unwanted|prefer|force ; no : биндаться только на global ipv6
; unwanted (default) : предпочтительно global, если нет - LL
; prefer : предпочтительно LL, если нет - global
; force : биндаться только на LL
--bind-iface4=<iface> ; слушать на первом ipv4 интерфейса iface
--bind-iface6=<iface> ; слушать на первом ipv6 интерфейса iface
--bind-wait-ifup=<sec> ; ждать до N секунд появления и поднятия интерфейса
--bind-wait-ip=<sec> ; ждать до N секунд получения IP адреса (если задан --bind-wait-ifup - время идет после поднятия интерфейса)
--bind-wait-ip-linklocal=<sec>
; имеет смысл только при задании --bind-wait-ip
; --bind-linklocal=unwanted : согласиться на LL после N секунд
; --bind-linklocal=prefer : согласиться на global address после N секунд
--bind-wait-only ; подождать все бинды и выйти. результат 0 в случае успеха, иначе не 0.
--connect-bind-addr ; с какого адреса подключаться во внешнюю сеть. может быть ipv4 или ipv6 адрес
; если указан ipv6 link local, то требуется указать с какого он интерфейса : fe80::1%br-lan
; опция может повторяться для v4 и v6 адресов
; опция не отменяет правил маршрутизации ! выбор интерфейса определяется лишь правилами маршрутизации, кроме случая v6 link local.
--socks ; вместо прозрачного прокси реализовать socks4/5 proxy
--no-resolve ; запретить ресолвинг имен через socks5
--resolve-threads ; количество потоков ресолвера
--port=<port> ; на каком порту слушать
--maxconn=<max_connections> ; максимальное количество соединений от клиентов к прокси
--maxfiles=<max_open_files> ; макс количество файловых дескрипторов (setrlimit). мин требование (X*connections+16), где X=6 в tcp proxy mode, X=4 в режиме тамперинга.
; стоит сделать запас с коэффициентом как минимум 1.5. по умолчанию maxfiles (X*connections)*1.5+16
--max-orphan-time=<sec> ; если вы запускаете через tpws торрент-клиент с множеством раздач, он пытается установить очень много исходящих соединений,
; большая часть из которых отваливается по таймауту (юзера сидят за NAT, firewall, ...)
; установление соединения в linux может длиться очень долго. локальный конец отвалился, перед этим послав блок данных,
; tpws ждет подключения удаленного конца, чтобы отослать ему этот блок, и зависает надолго.
; настройка позволяет сбрасывать такие подключения через N секунд, теряя блок данных. по умолчанию 5 сек. 0 означает отключить функцию
; эта функция не действует на успешно подключенные ранее соединения
--local-rcvbuf=<bytes> ; SO_RCVBUF для соединений client-proxy
--local-sndbuf=<bytes> ; SO_SNDBUF для соединений client-proxy
--remote-rcvbuf=<bytes> ; SO_RCVBUF для соединений proxy-target
--remote-sndbuf=<bytes> ; SO_SNDBUF для соединений proxy-target
--nosplice ; не использовать splice на linux системах
--skip-nodelay ; не устанавливать в исходящих соединения TCP_NODELAY. несовместимо со split.
--local-tcp-user-timeout=<seconds> ; таймаут соединений client-proxy (по умолчанию : 10 сек, 0 = оставить системное значение)
--remote-tcp-user-timeout=<seconds> ; таймаут соединений proxy-target (по умолчанию : 20 сек, 0 = оставить системное значение)
--fix-seg=<int> ; исправлять неудачи tcp сегментации ценой задержек для всех клиентов и замедления. ждать до N мс. по умолчанию 30 мс.
--split-pos=N|-N|marker+N|marker-N ; список через запятую маркеров для tcp сегментации
--split-any-protocol ; применять сегментацию к любым пакетам. по умолчанию - только к известным протоколам (http, TLS)
--disorder[=http|tls] ; путем манипуляций с сокетом вынуждает отправлять первым второй сегмент разделенного запроса
--oob[=http|tls] ; отправить байт out-of-band data (OOB) в конце первой части сплита
--oob-data=<char>|0xHEX ; переопределить байт OOB. по умолчанию 0x00.
--hostcase ; менять регистр заголовка "Host:". по умолчанию на "host:".
--hostspell=HoST ; точное написание заголовка Host (можно "HOST" или "HoSt"). автоматом включает --hostcase
--hostdot ; добавление точки после имени хоста : "Host: kinozal.tv."
--hosttab ; добавление табуляции после имени хоста : "Host: kinozal.tvt"
--hostnospace ; убрать пробел после "Host:"
--hostpad=<bytes> ; добавить паддинг-хедеров общей длиной <bytes> перед Host:
--domcase ; домен после Host: сделать таким : TeSt.cOm
--methodspace ; добавить пробел после метода : "GET /" => "GET /"
--methodeol ; добавить перевод строки перед методом : "GET /" => "rnGET /"
--unixeol ; конвертировать 0D0A в 0A и использовать везде 0A
--tlsrec=N|-N|marker+N|marker-N ; разбивка TLS ClientHello на 2 TLS records на указанной позиции. Минимальное смещение - 6.
--mss=<int> ; установить MSS для клиента. может заставить сервер разбивать ответы, но существенно снижает скорость
--tamper-start=[n]<pos> ; начинать дурение только с указанной байтовой позиции или номера блока исходяшего потока (считается позиция начала принятого блока)
--tamper-cutoff=[n]<pos> ; закончить дурение на указанной байтовой позиции или номере блока исходящего потока (считается позиция начала принятого блока)
--hostlist=<filename> ; действовать только над доменами, входящими в список из filename. поддомены автоматически учитываются.
; в файле должен быть хост на каждой строке.
; список читается при старте и хранится в памяти в виде иерархической структуры для быстрого поиска.
; при изменении времени модификации файла он перечитывается автоматически по необходимости
; список может быть запакован в gzip. формат автоматически распознается и разжимается
; списков может быть множество. пустой общий лист = его отсутствие
; хосты извлекаются из Host: хедера обычных http запросов и из SNI в TLS ClientHello.
--hostlist-domains=<domain_list> ; фиксированный список доменов через зяпятую. можно использовать # в начале для комментирования отдельных доменов.
--hostlist-exclude=<filename> ; не применять дурение к доменам из листа. может быть множество листов. схема аналогична include листам.
--hostlist-exclude-domains=<domain_list> ; фиксированный список доменов через зяпятую. можно использовать # в начале для комментирования отдельных доменов.
--hostlist-auto=<filename> ; обнаруживать автоматически блокировки и заполнять автоматический hostlist (требует перенаправления входящего трафика)
--hostlist-auto-fail-threshold=<int> ; сколько раз нужно обнаружить ситуацию, похожую на блокировку, чтобы добавить хост в лист (по умолчанию: 3)
--hostlist-auto-fail-time=<int> ; все эти ситуации должны быть в пределах указанного количества секунд (по умолчанию: 60)
--hostlist-auto-debug=<logfile> ; лог положительных решений по autohostlist. позволяет разобраться почему там появляются хосты.
--new ; начало новой стратегии (новый профиль)
--skip ; не использовать этот профиль . полезно для временной деактивации профиля без удаления параметров.
--filter-l3=ipv4|ipv6 ; фильтр версии ip для текущей стратегии
--filter-tcp=[~]port1[-port2]|* ; фильтр портов tcp для текущей стратегии. ~ означает инверсию. поддерживается список через запятую.
--filter-l7=[http|tls|quic|wireguard|dht|unknown] ; фильтр протокола L6-L7. поддерживается несколько значений через запятую.
--ipset=<filename> ; включающий ip list. на каждой строчке ip или cidr ipv4 или ipv6. поддерживается множество листов и gzip. перечитка автоматическая.
--ipset-ip=<ip_list> ; фиксированный список подсетей через запятую. можно использовать # в начале для комментирования отдельных подсетей.
--ipset-exclude=<filename> ; исключающий ip list. на каждой строчке ip или cidr ipv4 или ipv6. поддерживается множество листов и gzip. перечитка автоматическая.
--ipset-exclude-ip=<ip_list> ; фиксированный список подсетей через запятую. можно использовать # в начале для комментирования отдельных подсетей.
tpws, как и nfqws, поддерживает множественную сегментацию запросов. Сплит позиции задаются в --split-pos . Указываются маркеры через запятую. Описание маркеров см в разделе nfqws.
На прикладном уровне в общем случае нет гарантированного средства заставить ядро выплюнуть блок данных, порезанным в определенном месте. ОС держит буфер отсылки (SNDBUF) у каждого сокета. Если у сокета включена опция TCP_NODELAY и буфер пуст, то каждый send приводит к отсылке отдельного ip пакета или группы пакетов, если блок не вмещается в один ip пакет. Однако, если в момент send уже имеется неотосланный буфер, то ОС присоединит данные к нему, никакой отсылки отдельным пакетом не будет. Но в этом случае и так нет никакой гарантии, что какой-то блок сообщения пойдет в начале пакета, на что собственно и заточены DPI. Разбиение будет производится согласно MSS, который зависит от MTU исходящего интерфейса. Таким образом DPI, смотрящие в начало поля данных TCP пакета, будут поломаны в любом случае. Протокол http относится к запрос-ответным протоколам. Новое сообщение посылается только тогда, когда сервер получил запрос и полностью вернул ответ. Значит запрос фактически был не только отослан, но и принят другой стороной, а следовательно буфер отсылки пуст, и следующие 2 send приведут к отсылке сегментов данных разными ip пакетами.
Таким образом tpws обеспечивает сплит только за счет раздельных вызовов send, и это обычно работает надежно, если разбивать не на слишком много частей и не на слишком мелкие подряд следующие части. В последнем случае Linux все же может обьединить некоторые части, что приведет к несоответствию реальной сегментации указанным сплит позициям. Другие ОС в этом вопросе ведут себя более предсказуемо. Спонтанного обьединения замечено не было. Поэтому не стоит злоупотреблять сплитами и в особенности мелкими соседними пакетами.
Как показывается практика, проблемы могут начаться , если количество сплит позиций превышает 8. При неудаче сегментации будет выводиться сообщение WARNING ! segmentation failed . Если вы его видите, это повод снизить количество сплит позиций. Если это не вариант, для ядер Linux >=4.6 есть параметр --fix-seg . Он позволяет подождать завершение отсылки перед отправкой следующей части. Но этот вариант ломает модель асинхронной обработки событий. Пока идет ожидание, все остальные соединения не обрабатываются и кратковременно подвисают. На практике это может быть совсем небольшое ожидание - менее 10 мс. И производится оно только , если происходит split, и в ожидании есть реальная необходимость. В высоконагруженных системах данный вариант не рекомендуется. Но для домашнего использования может подойти, и вы эти задержки даже не заметите.
Если вы пытаетесь сплитнуть массивную передачу с --split-any-protocol , когда информация поступает быстрее отсылки, то без --fix-seg ошибки сегментации будут сыпаться сплошным потоком. Работа по массивному потоку без ограничителей --tamper-start и --tamper-cutoff обычно лишена смысла.
tpws работает на уровне сокетов, поэтому длинный запрос, не вмещающийся в 1 пакет (TLS с kyber), он получает целым блоком. На каждую сплит часть он делает отдельный вызов send() . Но ОС не сможет отослать данные в одном пакете, если размер превысит MTU. В случае слишком большого сегмента ОС дополнительно его порежет на более мелкие. Результат должен быть аналогичен nfqws.
--disorder заставляет слать каждый 2-й пакет с TTL=1, начиная с первого. К серверу приходят все четные пакеты сразу. На остальные ОС делает ретрансмиссию, и они приходят потом. Это само по себе создает дополнительную задержку (200 мс в linux для первой ретрансмиссии). Иным способом сделать disorder в сокет варианте не представляется возможным. Итоговый порядок для 6 сегментов получается 2 4 6 1 3 5 .
--oob высылает 1 байт out-of-band data после первого сплит сегмента. oob в каждом сегменте сплита показал себя ненадежным. Сервер получает oob в сокет.
Сочетание oob и disorder возможно только в Linux. Остальные ОС не умеют с таким справляться. Флаг URG теряется при ретрансмиссиях. Сервер получает oob в сокет. Сочетание этих параметров в ос, кроме Linux, вызывает ошибку на этапе запуска.
--tlsrec позволяют внутри одного tcp сегмента разрезать TLS ClientHello на 2 TLS records. Можно использовать стандартный механизм маркеров для задания относительных позиций.
--tlsrec ломает значительное количество сайтов. Криптобиблиотеки (openssl, ...) на оконечных http серверах без проблем принимают разделенные tls сегменты, но мидлбоксы - не всегда. К мидлбоксам можно отнести CDN или системы ddos-защиты. Поэтому применение --tlsrec без ограничителей вряд ли целесообразно. В РФ --tlsrec обычно не работает с TLS 1.2, потому что цензор парсит сертификат сервера из ServerHello. Работает только с TLS 1.3, поскольку там эта информация шифруется. Впрочем, сейчас сайтов, не поддерживающих TLS 1.3, осталось немного.
--mss устанавливает опцию сокета TCP_MAXSEG. Клиент выдает это значение в tcp опциях SYN пакета. Сервер в ответ в SYN,ACK выдает свой MSS. На практике сервера обычно снижают размеры отсылаемых ими пакетов, но они все равно не вписываются в низкий MSS, указанный клиентом. Обычно чем больше указал клиент, тем больше шлет сервер. На TLS 1.2 если сервер разбил заброс так, чтобы домен из сертификата не попал в первый пакет, это может обмануть DPI, секущий ответ сервера. Схема может значительно снизить скорость и сработать не на всех сайтах. С фильтром по hostlist совместимо только в режиме socks при включенном удаленном ресолвинге хостов. (firefox network.proxy.socks_remote_dns). Это единственный вариант, когда tpws может узнать имя хоста еще на этапе установления соединения. Применяя данную опцию к сайтам TLS1.3, если броузер тоже поддерживает TLS1.3, то вы делаете только хуже. Но нет способа автоматически узнать когда надо применять, когда нет, поскольку MSS идет только в 3-way handshake еще до обмена данными, а версию TLS можно узнать только по ответу сервера, который может привести к реакции DPI. Использовать только когда нет ничего лучше или для отдельных ресурсов. Для http использовать смысла нет, поэтому заводите отдельный desync profile с фильтром по порту 443. Работает только на Linux, не работает на BSD и MacOS.
Параметр --hostpad=<bytes> добавляет паддинг-хедеров перед Host: на указанное количество байтов. Если размер <bytes> слишком большой, то идет разбивка на разные хедеры по 2K. Общий буфер приема http запроса - 64K, больший паддинг не поддерживается, да и http сервера такое уже не принимают. Полезно против DPI, выполняющих реассемблинг TCP с ограниченным буфером. Если техника работает, то после некоторого количества bytes http запрос начнет проходить до сайта. Если при этом критический размер padding около MTU, значит скорее всего DPI не выполняет реассемблинг пакетов, и лучше будет использовать обычные опции TCP сегментации. Если все же реассемблинг выполняется, то критический размер будет около размера буфера DPI. Он может быть 4K или 8K, возможны и другие значения.
Работают аналогично nfqws , кроме некоторых моментов. Нет параметра --filter-udp , поскольку tpws udp не поддерживает. Методы нулевой фазы ( --mss ) могут работать по хостлисту в одном единственном случае: если используется режим socks и удаленный ресолвинг хостов через прокси. То есть работоспособность вашей настройки в одном и том же режиме может зависеть от того, применяет ли клиент удаленный ресолвинг. Это может быть неочевидно. В одной программе работает, в другой - нет. Если вы используете профиль с хостлистом , и вам нужен mss, укажите mss в профиле с хостлистом, создайте еще один профиль без хостлиста, если его еще нет, и в нем еще раз укажите mss. Тогда при любом раскладе будет выполняться mss. Используйте curl --socks5 и curl --socks5-hostname для проверки вашей стратегии. Смотрите вывод --debug , чтобы убедиться в правильности настроек.
--debug allows you to display a detailed log of actions to the console, in Syslog or to a file. The procedure for following the options may be important. --debug is best indicated at the very beginning. Options are analyzed sequentially. If the error is checking the option, and the case has not yet reached the --debug , then the messages will not be displayed to the file or Syslog. --debug=0|1|2 allow you to immediately include logistics on the console in one parameter and indicate the level. Saved for compatibility with older versions. To select a level in Syslog or File, use a separate parameter --debug-level . If in these --debug modes do not indicate the level through --debug-level , then level 1 is automatically assigned. When logging into the file, the process does not hold the file open. For the sake of each recording, the file opens and then closes. So the file can be deleted at any time, and it will be created again at the first message in the log. But keep in mind that if you start the process under the Root, you will be replaced by UID to non-ROOT. In the beginning, the file changes on the log, otherwise the recording will be impossible. If you then delete the file, and the process will not have the right to create a file in its directory, the log will no longer be conducted. Instead of removal, it is better to use truncate. In Shel, this can be done through the command ":> Filename"
tpws может биндаться на множество интерфейсов и IP адресов (до 32 шт). Порт всегда только один. Параметры --bind-iface* и --bind-addr создают новый бинд. Остальные параметры --bind-* относятся к последнему бинду. Для бинда на все ipv4 укажите --bind-addr "0.0.0.0" , на все ipv6 - "::" . --bind-addr="" - биндаемся на все ipv4 и ipv6. Выбор режима использования link local ipv6 адресов ( fe80::/8 ) :
--bind-iface6 --bind-linklocal=no : сначала приватный адрес fc00::/7, затем глобальный адрес
--bind-iface6 --bind-linklocal=unwanted : сначала приватный адрес fc00::/7, затем глобальный адрес, затем link local.
--bind-iface6 --bind-linklocal=prefer : сначала link local, затем приватный адрес fc00::/7, затем глобальный адрес.
--bind-iface6 --bind-linklocal=force : только link local
Если не указано ни одного бинда, то создается бинд по умолчанию на все адреса всех интерфейсов. Для бинда на конкретный link-local address делаем так : --bind-iface6=fe80::aaaa:bbbb:cccc:dddd%iface-name Параметры --bind-wait* могут помочь в ситуациях, когда нужно взять IP с интерфейса, но его еще нет, он не поднят или не сконфигурирован. В разных системах события ifup ловятся по-разному и не гарантируют, что интерфейс уже получил IP адрес определенного типа. В общем случае не существует единого механизма повеситься на событие типа "на интерфейсе X появился link local address". Для бинда на известный ip, когда еще интерфейс не сконфигурирован, нужно делать так: --bind-addr=192.168.5.3 --bind-wait-ip=20 В режиме transparent бинд возможен на любой несуществующий адрес, в режиме socks - только на существующий.
Параметры rcvbuf и sndbuf позволяют установить setsockopt SO_RCVBUF SO_SNDBUF для локального и удаленного соединения.
--skip-nodelay может быть полезен, когда tpws используется без дурения, чтобы привести MTU к MTU системы, на которой работает tpws. Это может быть полезно для скрытия факта использования VPN. Пониженный MTU - 1 из способов обнаружения подозрительного подключения. С tcp proxy ваши соединения неотличимы от тех, что сделал бы сам шлюз.
--local-tcp-user-timeout и --remote-tcp-user-timeout устанавливают значение таймаута в секундах для соединений клиент-прокси и прокси-сервер. Этот таймаут соответствует опции сокета linux TCP_USER_TIMEOUT. Под таймаутом подразумевается время, в течение которого буферизированные данные не переданы или на переданные данные не получено подтверждение (ACK) от другой стороны. Этот таймаут никак не касается времени отсутствия какой-либо передачи через сокет лишь потому, что данных для передачи нет. Полезно для сокращения время закрытия подвисших соединений. Поддерживается только на Linux и MacOS.
Режим --socks не требует повышенных привилегий (кроме бинда на привилегированные порты 1..1023). Поддерживаются версии socks 4 и 5 без авторизации. Версия протокола распознается автоматически. Подключения к IP того же устройства, на котором работает tpws, включая localhost, запрещены. socks5 позволяет удаленно ресолвить хосты (curl : --socks5-hostname firefox : socks_remote_dns=true). tpws поддерживает эту возможность асинхронно, не блокируя процессинг других соединений, используя многопоточный пул ресолверов. Количество потоков определяется автоматически в зависимости от --maxconn , но можно задать и вручную через параметр --resolver-threads . Запрос к socks выставляется на паузу, пока домен не будет преобразован в ip адрес в одном из потоков ресолвера. Ожидание может быть более длинным, если все потоки заняты. Если задан параметр --no-resolve , то подключения по именам хостов запрещаются, а пул ресолверов не создается. Тем самым экономятся ресурсы.
Для перенаправления tcp соединения на transparent proxy используются команды следующего вида :
iptables -t nat -I OUTPUT -o <внешний_интерфейс> -p tcp --dport 80 -m owner ! --uid-owner tpws -j DNAT --to 127.0.0.127:988
iptables -t nat -I PREROUTING -i <внутренний_интерфейс> -p tcp --dport 80 -j DNAT --to 127.0.0.127:988
Первая команда для соединений с самой системы, вторая - для проходящих через роутер соединений.
DNAT на localhost работает в цепочке OUTPUT, но не работает в цепочке PREROUTING без включения параметра route_localnet :
sysctl -w net.ipv4.conf.<внутренний_интерфейс>.route_localnet=1
Можно использовать -j REDIRECT --to-port 988 вместо DNAT, однако в этом случае процесс transparent proxy должен слушать на ip адресе входящего интерфейса или на всех адресах. Слушать на всех - не есть хорошо с точки зрения безопасности. Слушать на одном (локальном) можно, но в случае автоматизированного скрипта придется его узнавать, потом динамически вписывать в команду. В любом случае требуются дополнительные усилия. Использование route_localnet тоже имеет потенциальные проблемы с безопасностью. Вы делаете доступным все, что висит на 127.0.0.0/8 для локальной подсети < внутренний_интерфейс>. Службы обычно привязываются к 127.0.0.1 , поэтому можно средствами iptables запретить входящие на 127.0.0.1 не с интерфейса lo, либо повесить tpws на любой другой IP из из 127.0.0.0/8 , например на 127.0.0.127 , и разрешить входящие не с lo только на этот IP.
iptables -A INPUT ! -i lo -d 127.0.0.127 -j ACCEPT
iptables -A INPUT ! -i lo -d 127.0.0.0/8 -j DROP
Фильтр по owner необходим для исключения рекурсивного перенаправления соединений от самого tpws. tpws запускается под пользователем tpws , для него задается исключающее правило.
IP6Tables work almost in the same way as IPV4, but there are a number of important nuances. In Dnat, you should take the address --to in square brackets. Zum Beispiel :
ip6tables -t nat -I OUTPUT -o <внешний_интерфейс> -p tcp --dport 80 -m owner ! --uid-owner tpws -j DNAT --to [::1]:988
Параметра route_localnet не существует для ipv6. DNAT на localhost (::1) возможен только в цепочке OUTPUT. В цепочке PREROUTING DNAT возможен на любой global address или на link local address того же интерфейса, откуда пришел пакет. NFQUEUE работает без изменений.
Базовая конфигурация :
IFACE_WAN=wan
IFACE_LAN=br-lan
sysctl -w net.ipv4.conf.$IFACE_LAN.route_localnet=1
nft create table inet ztest
nft create chain inet ztest localnet_protect
nft add rule inet ztest localnet_protect ip daddr 127.0.0.127 return
nft add rule inet ztest localnet_protect ip daddr 127.0.0.0/8 drop
nft create chain inet ztest input "{type filter hook input priority filter - 1;}"
nft add rule inet ztest input iif != "lo" jump localnet_protect
nft create chain inet ztest dnat_output "{type nat hook output priority dstnat;}"
nft add rule inet ztest dnat_output meta skuid != tpws oifname $IFACE_WAN tcp dport { 80, 443 } dnat ip to 127.0.0.127:988
nft create chain inet ztest dnat_pre "{type nat hook prerouting priority dstnat;}"
nft add rule inet ztest dnat_pre meta iifname $IFACE_LAN tcp dport { 80, 443 } dnat ip to 127.0.0.127:988
Удаление таблицы :
nft delete table inet ztest
!!! NFTables cannot work with IPSET-am. Own similar mechanism requires a huge amount of RAM !!! To download large sheets. For example, even 256 MB is not enough for a 100K post in NFSET. !!! If you need large sheets on home routers, roll back to the iPtables+IPSET.
ipset/zapret-hosts-user.txt и запустите ipset/get_user.sh На выходе получите ipset/zapret-ip-user.txt с IP адресами.Cкрипты с названием get_reestr_* оперируют дампом реестра заблокированных сайтов :
ipset/get_reestr_resolve.sh получает список доменов от rublacklist и дальше их ресолвит в ip адреса в файл ipset/zapret-ip.txt.gz. В этом списке есть готовые IP адреса, но судя во всему они там в точности в том виде, что вносит в реестр РосКомПозор. Адреса могут меняться, позор не успевает их обновлять, а провайдеры редко банят по IP : вместо этого они банят http запросы с "нехорошим" заголовком "Host:" вне зависимости от IP адреса. Поэтому скрипт ресолвит все сам, хотя это и занимает много времени. Используется мультипоточный ресолвер mdig (собственная разработка).
ipset/get_reestr_preresolved.sh . то же самое, что и 2), только берется уже заресолвленый список со стороннего ресурса.
ipset/get_reestr_preresolved_smart.sh . то же самое, что и 3), с добавлением всего диапазона некоторых автономных систем (прыгающие IP адреса из cloudflare, facebook, ...) и некоторых поддоменов блокируемых сайтов
Cкрипты с названием get_antifilter_* оперируют списками адресов и масок подсетей с сайтов antifilter.network и antifilter.download :
ipset/get_antifilter_ip.sh . получает лист https://antifilter.download/list/ip.lst.
ipset/get_antifilter_ipsmart.sh . получает лист https://antifilter.network/download/ipsmart.lst. умная суммаризация отдельных адресов из ip.lst по маскам от /32 до /22
ipset/get_antifilter_ipsum.sh . получает лист https://antifilter.download/list/ipsum.lst. суммаризация отдельных адресов из ip.lst по маске /24
ipset/get_antifilter_ipresolve.sh . получает лист https://antifilter.download/list/ipresolve.lst. пре-ресолвленный список, аналогичный получаемый при помощи get_reestr_resolve. только ipv4.
ipset/get_antifilter_allyouneed.sh . получает лист https://antifilter.download/list/allyouneed.lst. Суммарный список префиксов, созданный из ipsum.lst и subnet.lst.
ipset/get_refilter_ipsum.sh . Список берется отсюда : https://github.com/1andrevich/Re-filter-lists
Все варианты рассмотренных скриптов автоматически создают и заполняют ipset. Варианты 2-10 дополнительно вызывают вариант 1.
ipset/get_config.sh . этот скрипт вызывает то, что прописано в переменной GETLIST из файла config Если переменная не определена, то ресолвятся лишь листы для ipset nozapret/nozapret6.Листы РКН все время изменяются. Возникают новые тенденции. Требования к RAM могут меняться. Поэтому необходима нечастая, но все же регулярная ревизия что же вообще у вас происходит на роутере. Или вы можете узнать о проблеме лишь когда у вас начнет постоянно пропадать wifi, и вам придется его перезагружать каждые 2 часа (метод кувалды).
Самые щадящие варианты по RAM - get_antifilter_allyouneed.sh , get_antifilter_ipsum.sh , get_refilter_*.sh .
Листы zapret-ip.txt и zapret-ipban.txt сохраняются в сжатом виде в файлы .gz. Это позволяет снизить их размер во много раз и сэкономить место на роутере. Отключить сжатие листов можно параметром конфига GZIP_LISTS=0.
На роутерах не рекомендуется вызывать эти скрипты чаще раза за 2 суток, поскольку сохранение идет либо во внутреннюю флэш память роутера, либо в случае extroot - на флэшку. В обоих случаях слишком частая запись может убить флэшку, но если это произойдет с внутренней флэш памятью, то вы просто убьете роутер.
Принудительное обновление ipset выполняет скрипт ipset/create_ipset.sh . Если передан параметр no-update , скрипт не обновляет ipset , а только создает его при его отсутствии и заполняет. Это полезно, когда могут случиться несколько последовательных вызовов скрипта. Нет смысла несколько раз перезаполнять ipset , это длительная операция на больших листах. Листы можно обновлять раз в несколько суток, и только тогда вызывать create_ipset без параметра no-update . Во всех остальных случаях стоит применять no-update .
Список РКН уже достиг внушительных размеров в сотни тысяч IP адресов. Поэтому для оптимизации ipset применяется утилита ip2net . Она берет список отдельных IP адресов и пытается интеллектуально создать из него подсети для сокращения количества адресов. ip2net отсекает неправильные записи в листах, гарантируя отсутствие ошибок при их загрузке. ip2net написан на языке C, поскольку операция ресурсоемкая. Иные способы роутер может не потянуть.
Можно внести список доменов в ipset/zapret-hosts-user-ipban.txt . Их ip адреса будут помещены в отдельный ipset ipban . Он может использоваться для принудительного завертывания всех соединений на прозрачный proxy redsocks или на VPN.
IPV6 : если включен ipv6, то дополнительно создаются листы с таким же именем, но с "6" на конце перед расширением. zapret-ip.txt => zapret-ip6.txt Создаются ipset-ы zapret6 и ipban6. Листы с antifilter не содержат список ipv6 адресов.
СИСТЕМА ИСКЛЮЧЕНИЯ IP . Все скрипты ресолвят файл zapret-hosts-user-exclude.txt , создавая zapret-ip-exclude.txt и zapret-ip-exclude6.txt . Они загоняются в ipset-ы nozapret и nozapret6. Все правила, создаваемые init скриптами, создаются с учетом этих ipset. Помещенные в них IP не участвуют в процессе. zapret-hosts-user-exclude.txt может содержать домены, ipv4 и ipv6 адреса или подсети.
FreeBSD . Скрипты ipset/*.sh работают так же на FreeBSD. Вместо ipset они создают lookup таблицы ipfw с аналогичными именами. ipfw таблицы в отличие от ipset могут содержать как ipv4, так и ipv6 адреса и подсети в одной таблице, поэтому разделения нет.
Параметр конфига LISTS_RELOAD задает произвольную команду для перезагрузки листов. Это особенно полезно на BSD системах с PF. LISTS_RELOAD=- отключает перезагрузку листов.
Утилита ip2net предназначена для преобразования ipv4 или ipv6 списка ip в список подсетей с целью сокращения размера списка. Входные данные берутся из stdin, выходные выдаются в stdout .
-4 ; лист - ipv4 (по умолчанию)
-6 ; лист - ipv6
--prefix-length=min[-max] ; диапазон рассматриваемых длин префиксов. например : 22-30 (ipv4), 56-64 (ipv6)
--v4-threshold=mul/div ; ipv4 : включать подсети, в которых заполнено по крайней мере mul/div адресов. например : 3/4
--v6-threshold=N ; ipv6 : минимальное количество ip для создания подсети
В списке могут присутствовать записи вида ip/prefix и ip1-ip2. Такие записи выкидываются в stdout без изменений. Они принимаются командой ipset. ipset умеет для листов hash:net из ip1-ip2 делать оптимальное покрытие ip/prefix. ipfw из FreeBSD понимает ip/prefix, но не понимает ip1-ip2. ip2net фильтрует входные данные, выкидывая неправильные IP адреса.
Выбирается подсеть, в которой присутствует указанный минимум адресов. Для ipv4 минимум задается как процент от размера подсети (mul/div. например, 3/4), для ipv6 минимум задается напрямую.
Размер подсети выбирается следующим алгоритмом: Сначала в указанном диапазоне длин префиксов ищутся подсети, в которых количество адресов - максимально. Если таких сетей найдено несколько, берется наименьшая сеть (префикс больше). Например, заданы параметры v6_threshold=2 prefix_length=32-64, имеются следующие ipv6 :
1234:5678:aaaa::5
1234:5678:aaaa::6
1234:5678:aaac::5
Результат будет :
1234:5678:aaa8::/45
Эти адреса так же входят в подсеть /32. Однако, нет смысла проходиться ковровой бомбардировкой, когда те же самые адреса вполне влезают в /45 и их ровно столько же. Если изменить v6_threshold=4, то результат будет:
1234:5678:aaaa::5
1234:5678:aaaa::6
1234:5678:aaac::5
То есть ip не объединятся в подсеть, потому что их слишком мало. Если изменить prefix_length=56-64 , результат будет:
1234:5678:aaaa::/64
1234:5678:aaac::5
Требуемое процессорное время для вычислений сильно зависит от ширины диапазона длин префиксов, размера искомых подсетей и длины листа. Если ip2net думает слишком долго, не используйте слишком большие подсети и уменьшите диапазон длин префиксов. Учтите, что арифметика mul/div - целочисленная. При превышении разрядной сетки 32 bit результат непредсказуем. Не надо делать такое: 5000000/10000000. 1/2 - гораздо лучше.
Программа предназначена для многопоточного ресолвинга больших листов через системный DNS. Она берет из stdin список доменов и выводит в stdout результат ресолвинга. Ошибки выводятся в stderr.
--threads=<threads_number> ; количество потоков. по умолчанию 1.
--family=<4|6|46> ; выбор семейства IP адресов : ipv4, ipv6, ipv4+ipv6
--verbose ; дебаг-лог на консоль
--stats=N ; выводить статистику каждые N доменов
--log-resolved=<file> ; сохранять успешно отресолвленные домены в файл
--log-failed=<file> ; сохранять неудачно отресолвленные домены в файл
--dns-make-query=<domain> ; вывести в stdout бинарный DNS запрос по домену. если --family=6, запрос будет AAAA, иначе A.
--dns-parse-query ; распарсить бинарный DNS ответ и выдать все ivp4 и ipv6 адреса из него в stdout
Параметры --dns-make-query и --dns-parse-query позволяют провести ресолвинг одного домена через произвольный канал. Например, следующим образом можно выполнить DoH запрос, используя лишь mdig и curl :
mdig --family=6 --dns-make-query=rutracker.org | curl --data-binary @- -H "Content-Type: application/dns-message" https://cloudflare-dns.com/dns-query | mdig --dns-parse-query
Альтернативой ipset является использование tpws или nfqws со списком доменов. Оба демона принимают неограниченное количество листов include ( --hostlist ) и exclude ( --hostlist-exclude ). Прежде всего проверяются exclude листы. При вхождении в них происходит отказ от дурения. Далее при наличии include листов проверяется домен на вхождение в них. При невхождении в список отказ от дурения. Если все include листы пустые, это приравнивается к отсутствию include листов. Ограничение перестает работать. В иных случаях происходит дурение. Нет ни одного списка - дурение всегда. Есть только exclude список - дурение всех, кроме. Есть только include список - дурение только их. Есть оба - дурение только include, кроме exclude.
В системе запуска это обыграно следующим образом. Присутствуют 2 include списка : ipset/zapret-hosts-users.txt.gz или ipset/zapret-hosts-users.txt , ipset/zapret-hosts.txt.gz или ipset/zapret-hosts.txt и 1 exclude список ipset/zapret-hosts-users-exclude.txt.gz или ipset/zapret-hosts-users-exclude.txt
При режимах фильтрации MODE_FILTER=hostlist или MODE_FILTER=autohostlist система запуска передает nfqws или tpws все листы, файлы которых присутствуют. Передача происходит через замену маркеров <HOSTLIST> и <HOSTLIST_NOAUTO> на реальные параметры --hostlist , --hostlist-exclude , --hostlist-auto . Если вдруг листы include присутствуют, но все они пустые, то работа аналогична отсутствию include листа. Файл есть, но не смотря на это дурится все, кроме exclude. Если вам нужен именно такой режим - не обязательно удалять zapret-hosts-users.txt . Достаточно сделать его пустым.
Поддомены учитываются автоматически. Например, строчка "ru" вносит в список " .ru". Строчка " .ru" в списке не сработает.
Список доменов РКН может быть получен скриптами
ipset/get_reestr_hostlist.sh
ipset/get_antizapret_domains.sh
ipset/get_reestr_resolvable_domains.sh
ipset/get_refilter_domains.sh
Он кладется в ipset/zapret-hosts.txt.gz .
При изменении времени модификации файлов списки перечитываются автоматически.
При фильтрации по именам доменов демон должен запускаться без фильтрации по ipset. tpws и nfqws решают нужно ли применять дурение в зависимости от хоста, полученного из протокола прикладного уровня (http, tls, quic). При использовании больших списков, в том числе списка РКН, оцените объем RAM на роутере ! Если после запуска демона RAM под завязку или случаются oom, значит нужно отказаться от таких больших списков.
Этот режим позволяет проанализировать как запросы со стороны клиента, так и ответы от сервера. Если хост еще не находится ни в каких листах и обнаруживается ситуация, похожая на блокировку, происходит автоматическое добавление хоста в список autohostlist как в памяти, так и в файле. nfqws или tpws сами ведут этот файл. Чтобы какой-то хост не смог попась в autohostlist используйте hostlist-exclude . Если он все-же туда попал - удалите запись из файла вручную. Процессы автоматически перечитают файл. tpws / nfqws сами назначают владельцем файла юзера, под которым они работают после сброса привилегий, чтобы иметь возможность обновлять лист.
В случае nfqws данный режим требует перенаправления в том числе и входящего трафика. Крайне рекомендовано использовать ограничитель connbytes , чтобы nfqws не обрабатывал гигабайты. По этой же причине не рекомендуется использование режима на BSD системах. Там нет фильтра connbytes .
На linux системах при использовании nfqws и фильтра connbytes может понадобится : sysctl net.netfilter.nf_conntrack_tcp_be_liberal=1 Было замечено, что некоторые DPI в России возвращают RST с неверным ACK. Это принимается tcp/ip стеком linux, но через раз приобретает статус INVALID в conntrack. Поэтому правила с connbytes срабатывают через раз, не пересылая RST пакет nfqws .
Как вообще могут вести себя DPI, получив "плохой запрос" и приняв решение о блокировке:
nfqws и tpws могут сечь варианты 1-3, 4 они не распознают. Всилу специфики работы с отдельными пакетами или с TCP каналом tpws и nfqws распознают эти ситуации по-разному. Что считается ситуацией, похожей на блокировку :
Чтобы снизить вероятность ложных срабатываний, имеется счетчик ситуаций, похожих на блокировку. Если за определенное время произойдет более определенного их количества, хост считается заблокированным и заносится в autohostlist . По нему сразу же начинает работать стратегия по обходу блокировки. Если в процессе счета вебсайт отвечает без признаков блокировки, счетчик сбрасывается. Вероятно, это был временный сбой сайта.
На практике работа с данным режимом выглядит так. Первый раз пользователь заходит на сайт и получает заглушку, сброс соединения или броузер подвисает, вываливаясь по таймауту с сообщением о невозможности загрузить страницу. Надо долбить F5, принуждая броузер повторять попытки. После некоторой попытки сайт начинает работать, и дальше он будет работать всегда.
С этим режимом можно использовать техники обхода, ломающие значительное количество сайтов. Если сайт не ведет себя как заблокированный, значит обход применен не будет. В противном случае терять все равно нечего. Однако, могут быть временные сбои сервера, приводящие к ситуации, аналогичной блокировке. Могут происходит ложные срабатывания. Если такое произошло, стратегия может начать ломать незаблокированный сайт. Эту ситуацию, увы, придется вам контролировать вручную. Заносите такие домены в ipset/zapret-hosts-user-exclude.txt , чтобы избежать повторения. Чтобы впоследствии разобраться почему домен был занесен в лист, можно включить autohostlist debug log . Он полезен тем, что работает без постоянного просмотра вывода nfqws в режиме debug. В лог заносятся только основные события, ведущие к занесению хоста в лист. По логу можно понять как избежать ложных срабатываний и подходит ли вообще вам этот режим.
Можно использовать один autohostlist с множеством процессов. Все процессы проверяют время модификации файла. Если файл был изменен в другом процессе, происходит его перечитывание. Все процессы должны работать под одним uid, чтобы были права доступа на файл.
Скрипты zapret ведут autohostlist в ipset/zapret-hosts-auto.txt . install_easy.sh при апгрейде zapret сохраняет этот файл. Режим autohostlist включает в себя режим hostlist . Можно вести ipset/zapret-hosts-user.txt , ipset/zapret-hosts-user-exclude.txt .
Перед настройкой нужно провести исследование какую бяку устроил вам ваш провайдер.
Нужно выяснить не подменяет ли он DNS и какой метод обхода DPI работает. В этом вам поможет скрипт blockcheck.sh .
Если DNS подменяется, но провайдер не перехватывает обращения к сторонним DNS, поменяйте DNS на публичный. Например: 8.8.8.8, 8.8.4.4, 1.1.1.1, 1.0.0.1, 9.9.9.9 Если DNS подменяется и провайдер перехватывает обращения к сторонним DNS, настройте dnscrypt . Еще один эффективный вариант - использовать ресолвер от yandex 77.88.8.88 на нестандартном порту 1253. Многие провайдеры не анализируют обращения к DNS на нестандартных портах. blockcheck если видит подмену DNS автоматически переключается на DoH сервера.
Следует прогнать blockcheck по нескольким заблокированным сайтам и выявить общий характер блокировок. Разные сайты могут быть заблокированы по-разному, нужно искать такую технику, которая работает на большинстве. Чтобы записать вывод blockcheck.sh в файл, выполните: ./blockcheck.sh | tee /tmp/blockcheck.txt .
Проанализируйте какие методы дурения DPI работают, в соответствии с ними настройте /opt/zapret/config .
Имейте в виду, что у провайдеров может быть несколько DPI или запросы могут идти через разные каналы по методу балансировки нагрузки. Балансировка может означать, что на разных ветках разные DPI или они находятся на разных хопах. Такая ситуация может выражаться в нестабильности работы обхода. Дернули несколько раз curl. То работает, то connection reset или редирект. blockcheck.sh выдает странноватые результаты. То split работает на 2-м. хопе, то на 4-м. Достоверность результата вызывает сомнения. В этом случае задайте несколько повторов одного и того же теста. Тест будет считаться успешным только, если все попытки пройдут успешно.
При использовании autottl следует протестировать как можно больше разных доменов. Эта техника может на одних провайдерах работать стабильно, на других потребуется выяснить при каких параметрах она стабильна, на третьих полный хаос, и проще отказаться.
Blockcheck имеет 3 уровня сканирования.
quick - максимально быстро найти хоть что-то работающее.standard дает возможность провести исследование как и на что реагирует DPI в плане методов обхода.force дает максимум проверок даже в случаях, когда ресурс работает без обхода или с более простыми стратегиями.Есть ряд других параметров, которые не будут спрашиваться в диалоге, но которые можно переопределить через переменные.
CURL - замена программы curl
CURL_MAX_TIME - время таймаута curl в секундах
CURL_MAX_TIME_QUIC - время таймаута curl для quic. если не задано, используется значение CURL_MAX_TIME
CURL_CMD=1 - показывать команды curl
CURL_OPT - дополнительные параметры curl. `-k` - игнор сертификатов. `-v` - подробный вывод протокола
DOMAINS - список тестируемых доменов через пробел
HTTP_PORT, HTTPS_PORT, QUIC_PORT - номера портов для соответствующих протоколов
SKIP_DNSCHECK=1 - отказ от проверки DNS
SKIP_TPWS=1 - отказ от тестов tpws
SKIP_PKTWS=1 - отказ от тестов nfqws/dvtws/winws
PKTWS_EXTRA, TPWS_EXTRA - дополнительные параметры nfqws/dvtws/winws и tpws
PKTWS_EXTRA_1 .. PKTWS_EXTRA_9, TPWS_EXTRA_1 .. TPWS_EXTRA_9 - отдельно дополнительные параметры, содержащие пробелы
SECURE_DNS=0|1 - принудительно выключить или включить DoH
DOH_SERVERS - список URL DoH через пробел для автоматического выбора работающего сервера
DOH_SERVER - конкретный DoH URL, отказ от поиска
UNBLOCKED_DOM - незаблокированный домен, который используется для тестов IP block
Пример запуска с переменными:
SECURE_DNS=1 SKIP_TPWS=1 CURL_MAX_TIME=1 CURL=/tmp/curl ./blockcheck.sh
СКАН ПОРТОВ
Если в системе присутствует совместимый netcat (ncat от nmap или openbsd ncat. в openwrt по умолчанию нет), то выполняется сканирование портов http или https всех IP адресов домена. Если ни один IP не отвечает, то результат очевиден. Можно останавливать сканирование. Автоматически оно не остановится, потому что netcat-ы недостаточно подробно информируют о причинах ошибки. Если доступна только часть IP, то можно ожидать хаотичных сбоев, т.к. подключение идет к случайному адресу из списка.
ПРОВЕРКА НА ЧАСТИЧНЫЙ IP block
Под частичным блоком подразумевается ситуация, когда коннект на порты есть, но по определенному транспортному или прикладному протоколу всегда идет реакция DPI вне зависимости от запрашиваемого домена. Эта проверка так же не выдаст автоматического вердикта/решения, потому что может быть очень много вариаций. Вместо этого анализ происходящего возложен на самого пользователя или тех, кто будет читать лог. Суть этой проверки в попытке дернуть неблокированный IP с блокированным доменом и наоборот, анализируя при этом реакцию DPI. Реакция DPI обычно проявляется в виде таймаута (зависание запроса), connection reset или http redirect на заглушку. Любой другой вариант скорее всего говорит об отсутствии реакции DPI. В частности, любые http коды, кроме редиректа, ведущего именно на заглушку, а не куда-то еще. На TLS - ошибки handshake без задержек. Ошибка сертификата может говорить как о реакции DPI с MiTM атакой (подмена сертификата), так и о том, что принимающий сервер неблокированного домена все равно принимает ваш TLS handshake с чужим доменом, пытаясь при этом выдать сертификат без запрошенного домена. Требуется дополнительный анализ. Если на заблокированный домен есть реакция на всех IP адресах, значит есть блокировка по домену. Если на неблокированный домен есть реакция на IP адресах блокированного домена, значит имеет место блок по IP. Соответственно, если есть и то, и другое, значит есть и блок по IP, и блок по домену. Неблокированный домен первым делом проверяется на доступность на оригинальном адресе. При недоступности тест отменяется, поскольку он будет неинформативен.
Если выяснено, что есть частичный блок по IP на DPI, то скорее всего все остальные тесты будут провалены вне зависимости от стратегий обхода. Но бывают и некоторые исключения. Например, пробитие через ipv6 option headers . Или сделать так, чтобы он не мог распознать протокол прикладного уровня. Дальнейшие тесты могут быть не лишены смысла.
ПРИМЕРЫ БЛОКИРОВКИ ТОЛЬКО ПО ДОМЕНУ БЕЗ БЛОКА ПО IP
> testing iana.org on it's original
!!!!! AVAILABLE !!!!!
> testing rutracker.org on 192.0.43.8 (iana.org)
curl: (28) Operation timed out after 1002 milliseconds with 0 bytes received
> testing iana.org on 172.67.182.196 (rutracker.org)
HTTP/1.1 409 Conflict
> testing iana.org on 104.21.32.39 (rutracker.org)
HTTP/1.1 409 Conflict
> testing iana.org on it's original ip
!!!!! AVAILABLE !!!!!
> testing rutracker.org on 192.0.43.8 (iana.org)
curl: (28) Connection timed out after 1001 milliseconds
> testing iana.org on 172.67.182.196 (rutracker.org)
curl: (35) OpenSSL/3.2.1: error:0A000410:SSL routines::ssl/tls alert handshake failure
> testing iana.org on 104.21.32.39 (rutracker.org)
curl: (35) OpenSSL/3.2.1: error:0A000410:SSL routines::ssl/tls alert handshake failure
> testing iana.org on it's original ip
!!!!! AVAILABLE !!!!!
> testing rutracker.org on 192.0.43.8 (iana.org)
HTTP/1.1 307 Temporary Redirect
Location: https://www.gblnet.net/blocked.php
> testing iana.org on 172.67.182.196 (rutracker.org)
HTTP/1.1 409 Conflict
> testing iana.org on 104.21.32.39 (rutracker.org)
HTTP/1.1 409 Conflict
> testing iana.org on it's original ip
!!!!! AVAILABLE !!!!!
> testing rutracker.org on 192.0.43.8 (iana.org)
curl: (35) Recv failure: Connection reset by peer
> testing iana.org on 172.67.182.196 (rutracker.org)
curl: (35) OpenSSL/3.2.1: error:0A000410:SSL routines::ssl/tls alert handshake failure
> testing iana.org on 104.21.32.39 (rutracker.org)
curl: (35) OpenSSL/3.2.1: error:0A000410:SSL routines::ssl/tls alert handshake failure
ПРИМЕР ПОЛНОГО IP БЛОКА ИЛИ БЛОКА TCP ПОРТА ПРИ ОТСУТСТВИИ БЛОКА ПО ДОМЕНУ
* port block tests ipv4 startmail.com:80
ncat -z -w 1 145.131.90.136 80
145.131.90.136 does not connect. netcat code 1
ncat -z -w 1 145.131.90.152 80
145.131.90.152 does not connect. netcat code 1
* curl_test_http ipv4 startmail.com
- checking without DPI bypass
curl: (28) Connection timed out after 2002 milliseconds
UNAVAILABLE code=28
- IP block tests (requires manual interpretation)
> testing iana.org on it's original ip
!!!!! AVAILABLE !!!!!
> testing startmail.com on 192.0.43.8 (iana.org)
HTTP/1.1 302 Found
Location: https://www.iana.org/
> testing iana.org on 145.131.90.136 (startmail.com)
curl: (28) Connection timed out after 2002 milliseconds
> testing iana.org on 145.131.90.152 (startmail.com)
curl: (28) Connection timed out after 2002 milliseconds
Файл /opt/zapret/config используется различными компонентами системы и содержит основные настройки. Его нужно просмотреть и при необходимости отредактировать.
На linux системах можно выбрать использовать iptables или nftables . По умолчанию на традиционных linux выбирается nftables , если установлен nft. На openwrt по умолчанию выбирается nftables на новых версиях с firewall4.
FWTYPE=iptables
На nftables можно отключить стандартную схему перехвата трафика после NAT и перейти на перехват до NAT. Это сделает невозможным применение некоторых методов дурения на проходящем трафике как в случае с iptables . nfqws начнет получать адреса пакетов из локальной сети и отображать их в логах.
POSTNAT=0
Существует 3 стандартных опции запуска, настраиваемых раздельно и независимо: tpws-socks , tpws , nfqws . Их можно использовать как по отдельности, так и вместе. Например, вам надо сделать комбинацию из методов, доступных только в tpws и только в nfqws . Их можно задействовать вместе. tpws будет прозрачно локализовывать трафик на системе и применять свое дурение, nfqws будет дурить трафик, исходящий с самой системы после обработки на tpws . А можно на эту же систему повесить без параметров socks proxy, чтобы получать доступ к обходу блокировок через прокси. Таким образом, все 3 режима вполне могут задействоваться вместе. Так же безусловно и независимо, в добавок к стандартным опциям, применяются все custom скрипты в init.d/{sysv,openwrt,macos}/custom.d .
Однако, при комбинировании tpws и nfqws с пересечением по L3/L4 протоколам не все так просто , как может показаться на первый взгляд. Первым всегда работает tpws, за ним - nfqws. На nfqws попадает уже "задуренный" трафик от tpws. Получается, что дурилка дурит дурилку, и дурилка не срабатывает, потому что ее задурили. Вот такой веселый момент. nfqws перестает распознавать протоколы и применять методы. Некоторые методы дурения от tpws nfqws в состоянии распознать и отработать корректно, но большинство - нет. Решение - использование --dpi-desync-any-protocol в nfqws и работа как с неизвестным протоколом. Комбинирование tpws и nfqws является продвинутым вариантом, требующим глубокого понимания происходящего. Очень желательно проанализировать действия nfqws по --debug логу. Все ли так, как вы задумали.
Одновременное использование tpws и nfqws без пересечения по L3/L4 (то есть nfqws - udp, tpws - tcp или nfqws - port 443, tpws - port 80 или nfqws - ipv4, tpws - ipv6) проблем не представляет.
tpws-socks требует настройки параметров tpws , но не требует перехвата трафика. Остальные опции требуют раздельно настройки перехвата трафика и опции самих демонов. Каждая опция предполагает запуск одного инстанса соответствующего демона. Все различия методов дурения для http , https , quic и т.д. должны быть отражены через схему мультистратегий. В этом смысле настройка похожа на вариант winws на Windows, а перенос конфигов не должен представлять больших сложностей. Основное правило настройки перехвата - перехватывайте только необходимый минимум. Любой перехват лишнего - это бессмысленная нагрузка на вашу систему. Опции демонов --ipset использовать запрещено. Это сделано намеренно и искусственно, чтобы не поощрять простой и работающий, но неэффективный метод на *nix системах. Используйте ipset -ы режима ядра. При необходимости пишите и задействуйте custom scripts . Настройки демонов можно для удобства писать на нескольких строках, используя двойные или одинарные кавычки. Чтобы задействовать стандартные обновляемые хост-листы из ipset , используйте маркер . Он будет заменен на параметры, соответствующие режиму MODE_FILTER, и будут подставлены реально существующие файлы. Если MODE_FILTER не предполагает стандартного хостлиста, будет заменен на пустую строку. Стандартные хостлисты следует вставлять в финальных стратегиях (стратегиях по умолчанию), закрывающих цепочки по группе параметров фильтра. Таких мест может быть несколько. Не нужно использовать в узких специализациях и в тех профилях, по которым точно не будет проходить трафик с известными протоколами, откуда поддерживается извлечение имени хоста ( http , tls , quic ). <HOSTLIST_NOAUTO> - это вариация, при которой стандартный автолист используется как обычный. То есть на этом профиле не происходит автоматическое добавление заблокированных доменов. Но если на другом профиле что-то будет добавлено, то этот профиль примет изменения автоматически.
Включение стандартной опции tpws в режиме socks
TPWS_SOCKS_ENABLE=0
На каком порту будет слушать tpws socks. прослушивается только localhost и LAN
TPPORT_SOCKS=987
Параметры tpws для режима socks
TPWS_SOCKS_OPT="
--filter-tcp=80 --methodeol <HOSTLIST> --new
--filter-tcp=443 --split-pos=1,midsld --disorder <HOSTLIST>"
Включение стандартной опции tpws в прозрачном режиме
TPWS_ENABLE=0
Какие tcp порты следует перенаправлять на tpws
TPWS_PORTS=80,443
Параметры tpws для прозрачного режима
TPWS_OPT="
--filter-tcp=80 --methodeol <HOSTLIST> --new
--filter-tcp=443 --split-pos=1,midsld --disorder <HOSTLIST>"
Включение стандартной опции nfqws
NFQWS_ENABLE=0
Какие tcp и udp порты следует перенаправлять на nfqws с использованием connbytes ограничителя
connbytes позволяет из каждого соединения перенаправить только заданное количество начальных пакетов по каждому направлению - на вход и на выход. Это более эффективная kernel-mode замена параметра nfqws --dpi-desync-cutoff=nX .
NFQWS_PORTS_TCP=80,443
NFQWS_PORTS_UDP=443
Сколько начальных входящих и исходящих пакетов нужно перенаправлять на nfqws по каждому направлению
NFQWS_TCP_PKT_OUT=$((6+$AUTOHOSTLIST_RETRANS_THRESHOLD))
NFQWS_TCP_PKT_IN=3
NFQWS_UDP_PKT_OUT=$((6+$AUTOHOSTLIST_RETRANS_THRESHOLD))
NFQWS_UDP_PKT_IN=0
Задать порты для перенаправления на nfqws без connbytes ограничителя
Есть трафик, исходящий сеанс для которого необходимо перенаправлять весь без ограничителей. Типичное применение - поддержка http keepalives на stateless DPI. Это существенно нагружает процессор. Использовать только если понимаете зачем. Чаще всего это не нужно. Входящий трафик ограничивается по connbytes через параметры PKT_IN. Если указываете здесь какие-то порты, желательно их убрать из версии с connbytes ограничителем
NFQWS_PORTS_TCP_KEEPALIVE=80
NFQWS_PORTS_UDP_KEEPALIVE=
Параметры nfqws
NFQWS_OPT="
--filter-tcp=80 --dpi-desync=fake,multisplit --dpi-desync-split-pos=method+2 --dpi-desync-fooling=md5sig <HOSTLIST> --new
--filter-tcp=443 --dpi-desync=fake,multidisorder --dpi-desync-split-pos=1,midsld --dpi-desync-fooling=badseq,md5sig <HOSTLIST> --new
--filter-udp=443 --dpi-desync=fake --dpi-desync-repeats=6 <HOSTLIST_NOAUTO>
Режим фильтрации хостов:
none - применять дурение ко всем хостам
ipset - ограничить дурение ipset-ом zapret/zapret6
hostlist - ограничить дурение списком хостов из файла
autohostlist - режим hostlist + распознавание блокировок и ведение автоматического листа
MODE_FILTER=none
Настройка системы управления выборочным traffic offload (только если поддерживается)
donttouch: выборочное управление отключено, используется системная настройка, простой инсталлятор выключает системную настройку, если она не совместима с выбранным режимом
none: выборочное управление отключено, простой инсталлятор выключает системную настройку
software: выборочное управление включено в режиме software, простой инсталлятор выключает системную настройку
hardware: выборочное управление включено в режиме hardware, простой инсталлятор выключает системную настройку
FLOWOFFLOAD=donttouch
Параметр GETLIST указывает инсталлятору install_easy.sh какой скрипт дергать для обновления списка заблокированных ip или хостов. Он же вызывается через get_config.sh из запланированных заданий (crontab или systemd timer). Поместите сюда название скрипта, который будете использовать для обновления листов. Если не нужно, то параметр следует закомментировать.
Можно индивидуально отключить ipv4 или ipv6. Если параметр закомментирован или не равен "1", использование протокола разрешено.
DISABLE_IPV4=1
DISABLE_IPV6=1
Количество потоков для многопоточного DNS ресолвера mdig (1..100). Чем их больше, тем быстрее, но не обидится ли на долбежку ваш DNS сервер?
MDIG_THREADS=30
Место для хранения временных файлов. При скачивании огромных реестров в /tmp места может не хватить. Если файловая система на нормальном носителе (не встроенная память роутера), то можно указать место на флэшке или диске. TMPDIR=/opt/zapret/tmp
Опции для создания ipset-ов и nfset-ов
SET_MAXELEM=262144
IPSET_OPT="hashsize 262144 maxelem 2097152"
Хук, позволяющий внести ip адреса динамически. $1 = имя таблицы
Адреса выводятся в stdout. В случае nfset автоматически решается проблема возможного пересечения интервалов.
IPSET_HOOK="/etc/zapret.ipset.hook"
ПРО РУГАНЬ в dmesg по поводу нехватки памяти.
Может так случиться, что памяти в системе достаточно, но при попытке заполнить огромный ipset ядро начинает громко ругаться, ipset заполняется не полностью.
Вероятная причина в том, что превышается hashsize , заданный при создании ipset (create_ipset.sh). Происходит переаллокация списка, не находится непрерывных фрагментов памяти нужной длины. Это лечится увеличением hashsize . Но чем больше hashsize , тем больше занимает ipset в памяти. Задавать слишком большой hashsize для недостаточно больших списков нецелесообразно.
Опции для вызова ip2net. Отдельно для листов ipv4 и ipv6.
IP2NET_OPT4="--prefix-length=22-30 --v4-threshold=3/4"
IP2NET_OPT6="--prefix-length=56-64 --v6-threshold=5"
Настройка режима autohostlist.
При увеличении AUTOHOSTLIST_RETRANS_THRESHOLD и использовании nfqws следует пересмотреть значения параметров NFQWS_TCP_PKT_OUT и NFQWS_UDP_PKT_OUT. Все ретрансмиссии должны быть получены nfqws, иначе триггер "зависание запроса" не сработает.
AUTOHOSTLIST_RETRANS_THRESHOLD=3
AUTOHOSTLIST_FAIL_THRESHOLD=3
AUTOHOSTLIST_FAIL_TIME=60
AUTOHOSTLIST_DEBUG=0
Включить или выключить сжатие больших листов в скриптах ipset/*.sh.
GZIP_LISTS=1
Команда для перезагрузки ip таблиц фаервола.
Если не указано или пустое, выбирается автоматически ipset или ipfw при их наличии. На BSD системах с PF нет автоматической загрузки. Там нужно указать команду явно: pfctl -f /etc/pf.conf На более новых pfctl (есть в новых FreeBSD, нет в OpenBSD 6.8) можно дать команду загрузки только таблиц: pfctl -Tl -f /etc/pf.conf "-" означает отключение загрузки листов даже при наличии поддерживаемого backend.
LISTS_RELOAD="pfctl -f /etc/pf.conf"
LISTS_RELOAD=-
В openwrt существует сеть по умолчанию 'lan'. Только трафик с этой сети будет перенаправлен на tpws. Но возможно задать другие сети или список сетей:
OPENWRT_LAN="lan lan2 lan3"
В openwrt в качестве wan берутся интерфейсы, имеющие default route. Отдельно для ipv4 и ipv6. Это можно переопределить:
OPENWRT_WAN4="wan4 vpn"
OPENWRT_WAN6="wan6 vpn6"
Параметр INIT_APPLY_FW=1 разрешает init скрипту самостоятельно применять правила iptables.
При иных значениях или если параметр закомментирован, правила применены не будут.
Это полезно, если у вас есть система управления фаерволом, в настройки которой и следует прикрутить правила.
На openwrt неприменимо при использовании firewall3+iptables.
Следующие настройки не актуальны для openwrt:
Если ваша система работает как роутер, то нужно вписать названия внутренних и внешних интерфейсов:
IFACE_LAN=eth0
IFACE_WAN=eth1
IFACE_WAN6="henet ipsec0"
Несколько интерфейсов могут быть вписаны через пробел. Если IFACE_WAN6 не задан, то берется значение IFACE_WAN.
Wichtig
Настройка маршрутизации, маскарада и т.д. не входит в задачу zapret. Включаются только режимы, обеспечивающие перехват транзитного трафика. Возможно определить несколько интерфейсов следующим образом:
IFACE_LAN="eth0 eth1 eth2"
Если вы используете какую-то систему управления фаерволом, то она может вступать в конфликт с имеющимся скриптом запуска. При повторном применении правил она могла бы поломать настройки iptables от zapret. В этом случае правила для iptables должны быть прикручены к вашему фаерволу отдельно от запуска tpws или nfqws.
Следующие вызовы позволяют применить или убрать правила iptables отдельно:
/opt/zapret/init.d/sysv/zapret start_fw
/opt/zapret/init.d/sysv/zapret stop_fw
/opt/zapret/init.d/sysv/zapret restart_fw
А так можно запустить или остановить демоны отдельно от фаервола:
/opt/zapret/init.d/sysv/zapret start_daemons
/opt/zapret/init.d/sysv/zapret stop_daemons
/opt/zapret/init.d/sysv/zapret restart_daemons
nftables сводят практически на нет конфликты между разными системами управления, поскольку позволяют использовать независимые таблицы и хуки. Используется отдельная nf-таблица "zapret". Если ваша система ее не будет трогать, скорее всего все будет нормально.
Для nftables предусмотрено несколько дополнительных вызовов:
Посмотреть set-ы интерфейсов, относящихся к lan, wan и wan6. По ним идет завертывание трафика. А так же таблицу flow table с именами интерфейсов ingress hook.
/opt/zapret/init.d/sysv/zapret list_ifsets
Обновить set-ы интерфейсов, относящихся к lan, wan и wan6. Для традиционных linux список интерфейсов берется из переменных конфига IFACE_LAN, IFACE_WAN. Для openwrt определяется автоматически. Множество lanif может быть расширено параметром OPENWRT_LAN. Все интерфейсы lan и wan так же добавляются в ingress hook от flow table.
/opt/zapret/init.d/sysv/zapret reload_ifsets
Просмотр таблицы без содержимого set-ов. Вызывает nft -t list table inet zapret
/opt/zapret/init.d/sysv/zapret list_table
Так же возможно прицепиться своим скриптом к любой стадии применения и снятия фаервола со стороны zapret скриптов:
INIT_FW_PRE_UP_HOOK="/etc/firewall.zapret.hook.pre_up"
INIT_FW_POST_UP_HOOK="/etc/firewall.zapret.hook.post_up"
INIT_FW_PRE_DOWN_HOOK="/etc/firewall.zapret.hook.pre_down"
INIT_FW_POST_DOWN_HOOK="/etc/firewall.zapret.hook.post_down"
Эти настройки доступны в config. Может быть полезно, если вам нужно использовать nftables set-ы, например ipban / ipban6 . nfset-ы принадлежат только одной таблице, следовательно вам придется писать правила для таблицы zapret, а значит нужно синхронизироваться с применением/снятием правил со стороны zapret скриптов.
custom скрипты - это маленькие shell программы, управляющие нестандартными режимами применения zapret или частными случаями, которые не могут быть интегрированы в основную часть без загромождения и замусоривания кода. Для применеия custom следует помещать файлы в следующие директории в зависимости от вашей системы:
/opt/zapret/init.d/sysv/custom.d
/opt/zapret/init.d/openwrt/custom.d
/opt/zapret/init.d/macos/custom.d
Директория будет просканирована в алфавитном порядке, и каждый скрипт будет применен.
В init.d имеется custom.d.examples.linux , в init.d/macos - custom.d.examples . Это готовые скрипты, которые можно копировать в custom.d . Их можно взять за основу для написания собственных.
Для linux пишется код в функции
zapret_custom_daemons
zapret_custom_firewall
zapret_custom_firewall_nft
zapret_custom_firewall_nft_flush
Для macos
zapret_custom_daemons
zapret_custom_firewall_v4
zapret_custom_firewall_v6
zapret_custom_daemons поднимает демоны nfqws / tpws в нужном вам количестве и с нужными вам параметрами. В первом параметре передается код операции: 1 = запуск, 0 = останов. Схема запуска демонов в openwrt отличается - используется procd. Поэтому логика останова отсутствует за ненадобностью, останов никогда не вызывается.
zapret_custom_firewall поднимает и убирает правила iptables . В первом параметре передается код операции: 1 = запуск, 0 = останов.
zapret_custom_firewall_nft поднимает правила nftables. Логика останова отсутствует за ненадобностью. Стандартные цепочки zapret удаляются автоматически. Однако, sets и правила из ваших собственных цепочек не удаляются. Их нужно подчистить в zapret_custom_firewall_nft_flush. Если set-ов и собственных цепочек у вас нет, функцию можно не определять или оставить пустой.
Если вам не нужны iptables или nftables - можете не писать соответствующую функцию.
В linux можно использовать локальные переменные FW_EXTRA_PRE и FW_EXTRA_POST .
FW_EXTRA_PRE добавляет код к правилам ip/nf tables до кода, генерируемого функциями-хелперами.
FW_EXTRA_POST добавляет код после.
В linux функции-хелперы добавляют правило в начало цепочек, то есть перед уже имеющимися. Поэтому специализации должны идти после более общих вариантов. Для macos правило обратное. Там правила добавляются в конец. По этой же причине фаервол в Linux сначала применяется в стандартном режиме, потом custom, а в MacOS сначала custom, потом стандартный режим.
В macos firewall-функции ничего сами никуда не заносят. Их задача - лишь выдать текст в stdout, содержащий правила для pf-якоря. Остальное сделает обертка.
Особо обратите внимание на номер демона в функциях run_daemon , do_daemon , do_tpws , do_tpws_socks , do_nfqws , номера портов tpws и очередей nfqueue . Они должны быть уникальными во всех скриптах. При накладке будет ошибка. Поэтому используйте функции динамического получения этих значений из пула.
custom скрипты могут использовать переменные из config . Можно помещать в config свои переменные и задействовать их в скриптах. Можно использовать функции-хелперы. Они являются частью общего пространства функций shell. Полезные функции можно взять из примеров скриптов. Так же смотрите common/*.sh . Используя хелпер функции, вы избавитесь от необходимости учитывать все возможные случаи типа наличия/отсутствия ipv6, является ли система роутером, имена интерфейсов, ...Хелперы это учитывают. Вам нужно сосредоточиться лишь на фильтрах {ip,nf}tables и параметрах демонов.
install_easy.sh автоматизирует ручные варианты процедур установки. Он поддерживает OpenWRT, linux системы на базе systemd или openrc и MacOS.
Для более гибкой настройки перед запуском инсталлятора следует выполнить раздел "Выбор параметров".
Если система запуска поддерживается, но используется не поддерживаемый инсталлятором менеджер пакетов или названия пакетов не соответствуют прописанным в инсталлятор, пакеты нужно установить вручную. Всегда требуется curl. ipset - только для режима iptables , для nftables - не нужен.
Для совсем обрезанных дистрибутивов (alpine) требуется отдельно установить iptables и ip6tables , либо nftables .
В комплекте идут статические бинарники для большинства архитектур. Какой-то из них подойдет с вероятностью 99%. Но если у вас экзотическая система, инсталлятор попробует собрать бинарники сам через make. Для этого нужны gcc, make и необходимые -dev пакеты. Можно форсировать режим компиляции следующим вызовом:
install_easy.sh make
Под openwrt все уже сразу готово для использования системы в качестве роутера. Имена интерфейсов WAN и LAN известны из настроек системы. Под другими системами роутер вы настраиваете самостоятельно. Инсталлятор в это не вмешивается. инсталлятор в зависимости от выбранного режима может спросить LAN и WAN интерфейсы. Нужно понимать, что заворот проходящего трафика на tpws в прозрачном режиме происходит до выполнения маршрутизации, следовательно возможна фильтрация по LAN и невозможна по WAN. Решение о завороте на tpws локального исходящего трафика принимается после выполнения маршрутизации, следовательно ситуация обратная: LAN не имеет смысла, фильтрация по WAN возможна. Заворот на nfqws происходит всегда после маршрутизации, поэтому к нему применима только фильтрация по WAN. Возможность прохождения трафика в том или ином направлении настраивается вами в процессе конфигурации роутера.
Деинсталляция выполняется через uninstall_easy.sh . После выполнения деинсталляции можно удалить каталог /opt/zapret .
Работает только если у вас на роутере достаточно места.
Копируем zapret на роутер в /tmp .
Запускаем установщик:
sh /tmp/zapret/install_easy.sh
Он скопирует в /opt/zapret только необходимый минимум файлов.
После успешной установки можно удалить zapret из tmp для освобождения RAM:
rm -r /tmp/zapret
Для более гибкой настройки перед запуском инсталлятора следует выполнить раздел "Выбор параметров".
Система простой инсталяции заточена на любое умышленное или неумышленное изменение прав доступа на файлы. Устойчива к репаку под windows. После копирования в /opt права будут принудительно восстановлены.
Требуется около 120-200 кб на диске. Придется отказаться от всего, кроме tpws .
Инструкция для openwrt 22 и выше с nftables
Никаких зависимостей устанавливать не нужно.
Installation:
init.d/openwrt-minimal/tpws/* в корень openwrt./usr/bin/tpws .chmod 755 /etc/init.d/tpws /usr/bin/tpws/etc/config/tpws/etc/nftables.d/90-tpws.nft и закомментируйте строки с редиректом ipv6./etc/init.d/tpws enable/etc/init.d/tpws startfw4 restartПолное удаление:
/etc/init.d/tpws disable/etc/init.d/tpws stoprm -f /etc/nftables.d/90-tpws.nft /etc/firewall.user /etc/init.d/tpws /usr/bin/tpwsfw4 restartИнструкция для openwrt 21 и ниже с iptables
Установите зависимости:
opkg updateopkg install iptables-mod-extraopkg install ip6tables-mod-nat Убедитесь, что в /etc/firewall.user нет ничего значимого. Если есть - не следуйте слепо инструкции. Объедините код или создайте свой firewall include в /etc/config/firewall .
Installation:
init.d/openwrt-minimal/tpws/* в корень openwrt./usr/bin/tpws .chmod 755 /etc/init.d/tpws /usr/bin/tpws/etc/config/tpws/etc/init.d/tpws enable/etc/init.d/tpws startfw3 restartПолное удаление:
/etc/init.d/tpws disable/etc/init.d/tpws stoprm -f /etc/nftables.d/90-tpws.nft /etc/firewall.user /etc/init.d/tpwstouch /etc/firewall.userfw3 restart Без рута забудьте про nfqws и tpws в режиме transparent proxy. tpws будет работать только в режиме --socks .
Ядра Android имеют поддержку NFQUEUE. nfqws работает.
В стоковых ядрах нет поддержки ipset. В общем случае сложность задачи по поднятию ipset варьируется от "не просто" до "почти невозможно". Если только вы не найдете готовое собранное ядро под ваш девайс.
tpws будет работать в любом случае, он не требует чего-либо особенного.
Хотя linux варианты под Android работают, рекомендуется использовать специально собранные под bionic бинарники. У них не будет проблем с DNS, с локальным временем и именами юзеров и групп.
Рекомендуется использовать gid 3003 (AID_INET). Иначе можете получить permission denied на создание сокета. Например: --uid 1:3003
В iptables укажите: ! --uid-owner 1 вместо ! --uid-owner tpws .
Напишите шелл скрипт с iptables и tpws, запускайте его средствами вашего рут менеджера. Скрипты автозапуска лежат тут:
magisk : /data/adb/service.d
supersu: /system/su.d
nfqws может иметь такой глюк. При запуске с uid по умолчанию (0x7FFFFFFF) при условии работы на сотовом интерфейсе и отключенном кабеле внешнего питания система может частично виснуть. Перестает работать тач и кнопки, но анимация на экране может продолжаться. Если экран был погашен, то включить его кнопкой power невозможно. Изменение UID на низкий (--uid 1 подойдет) позволяет решить эту проблему. Глюк был замечен на android 8.1 на девайсе, основанном на платформе mediatek.
Ответ на вопрос куда поместить tpws на android без рута, чтобы потом его запускать из приложений. Файл заливаем через adb shell в /data/local/tmp/, лучше всего в субфолдер.
mkdir /data/local/tmp/zapret
adb push tpws /data/local/tmp/zapret
chmod 755 /data/local/tmp/zapret /data/local/tmp/zapret/tpws
chcon u:object_r:system_file:s0 /data/local/tmp/zapret/tpws
Как найти стратегию обхода сотового оператора: проще всего раздать инет на комп. Для этого подойдет любая поддерживаемая ОС. Подключите android через USB кабель к компу и включите режим модема. Прогоните стандартную процедуру blockcheck. При переносе правил на телефон уменьшить TTL на 1, если правила с TTL присутствуют в стратегии. Если проверялось на windows, убрать параметры --wf-* .
Работа blockcheck в android shell не поддерживается, но имея рута можно развернуть rootfs какого-нибудь дистрибутива linux. Это лучше всего делать с компа через adb shell. Если компа нет, то развертка chroot - единственный вариант, хотя и неудобный. Подойдет что-то легковесное, например, alpine или даже openwrt. Если это не эмулятор android, то универсальная архитектура - arm (любой вариант). Если вы точно знаете, что ОС у вас 64-разрядная, то лучше вместо arm - aarch64. Выяснить архитектуру можно командой uname -a .
mount --bind /dev /data/linux/dev
mount --bind /proc /data/linux/proc
mount --bind /sys /data/linux/sys
chroot /data/linux
Первым делом вам нужно будет один раз настроить DNS. Сам он не заведется.
echo nameserver 1.1.1.1 >/etc/resolv.conf
Далее нужно средствами пакетного менеджера установить iptables-legacy. Обязательно НЕ iptables-nft, который, как правило, присутствует по умолчанию. В ядре android нет nftables.
ls -la $(which iptables)
Линк должен указывать на legacy вариант. Если нет, значит устанавливайте нужные пакеты вашего дистрибутива, и убеждайтесь в правильности ссылок.
iptables -S
Так можно проверить, что ваш iptables увидел то, что туда насовал android. iptables-nft выдаст ошибку. Далее качаем zapret в /opt/zapret . Обычные действия с install_prereq.sh , install_bin.sh , blockcheck.sh .
Учтите, что стратегии обхода сотового оператора и домашнего wifi вероятно будут разные. Выделить сотового оператора легко через параметр iptables -o <имя интерфейса> . Имя может быть, например, ccmni0 . Его легко увидеть через ifconfig . Wifi сеть - обычно wlan0 .
Переключать blockcheck между оператором и wifi можно вместе со всем инетом - включив или выключив wifi. Если найдете стратегию для wifi и впишите ее в автостарт, то при подключении к другому wifi она может не сработать или вовсе что-то поломать, потому подумайте стоит ли. Может быть лучше сделать скрипты типа "запустить обход домашнего wifi", "снять обход домашнего wifi", и пользоваться ими по необходимости из терминала. Но домашний wifi лучше все-же обходить на роутере.
Устройства типа E3372, E8372, E5770 разделяют общую идеологию построения системы. Имеются 2 вычислительных ядра. Одно ядро выполняет vxworks, другое - linux. На 4pda имеются модифицированные прошивки с telnet и adb. Их и нужно использовать.
Дальнейшие утверждения проверены на E8372. На других может быть аналогично или похоже. Присутствуют дополнительные аппаратные блоки для offload-а сетевых функций. Не весь трафик идет через linux. Исходящий трафик с самого модема проходит цепочку OUTPUT нормально, на FORWARD =>wan часть пакетов выпадает из tcpdump.
tpws работает обычным образом.
nfqueue поломан, можно собрать фиксящий модуль https://github.com/im-0/unfuck-nfqueue-on-e3372h, используя исходники с huawei open source. Исходники содержат тулчейн и полусобирающееся, неактуальное ядро. Конфиг можно взять с рабочего модема из /proc/config.gz . С помощью этих исходников умельцы могут собрать модуль unfuck_nfqueue.ko . После его применения NFQUEUE и nfqws для arm работают нормально.
Чтобы избежать проблемы с offload-ом при использовании nfqws, следует комбинировать tpws в режиме tcp proxy и nfqws. Правила NFQUEUE пишутся для цепочки OUTPUT. connbytes придется опускать, поскольку модуля в ядре нет. Но это не смертельно.
Скрипт автозапуска - /system/etc/autorun.sh . Создайте свой скрипт настройки zapret, запускайте из конца autorun.sh через "&". Скрипт должен в начале делать sleep 5, чтобы дождаться поднятия сети и iptables от huawei.
Warnung
На этом модеме происходят хаотические сбросы соединений tcp по непонятным причинам. Выглядит это так, если запускать curl с самого модема:
curl www.ru
curl: (7) Failed to connect to www.ru port 80: Host is unreachable
Возникает ошибка сокета EHOSTUNREACH (errno -113). То же самое видно в tpws. В броузере не подгружаются части веб страниц, картинки, стили. В tcpdump на внешнем интерфейсе eth_x виден только единственный и безответный SYN пакет, без сообщений ICMP. ОС каким-то образом узнает о невозможности установить TCP соединение и выдает ошибку. Если выполнять подключение с клиента, то SYN пропадают, соединение не устанавливается. ОС клиента проводит ретрансмиссию, и с какого-то раза подключение удается. Поэтому без tcp проксирования в этой ситуации сайты тупят, но загружаются, а с проксированием подключение выполняется, но вскоре сбрасывается без каких-либо данных, и броузеры не пытаются установить его заново. Поэтому качество броузинга с tpws может быть хуже, но дело не в tpws. Частота сбросов заметно возрастает, если запущен торент клиент, имеется много tcp соединений. Однако, причина не в переполнении таблицы conntrack. Увеличение лимитов и очистка conntrack не помогают. Предположительно эта особенность связана с обработкой пакетов сброса соединения в hardware offload. Точного ответа на вопрос у меня нет. Если вы знаете - поделитесь, пожалуйста. Чтобы не ухудшать качество броузинга, можно фильтровать заворот на tpws по ip фильтру. Поддержка ipset отсутствует. Значит, все, что можно сделать - создать индивидуальные правила на небольшое количество хостов.
Некоторые наброски скриптов присутствуют в files/huawei. Не готовое решение! Смотрите, изучайте, приспосабливайте.
Здесь можно скачать готовые полезные статические бинарники для arm, включая curl : https://github.com/bol-van/bins
Описано в документации BSD
Описано в документации Windows
Для статических бинариков не имеет значения на чем они запущены: PC, android, приставка, роутер, любой другой девайс. Подойдет любая прошивка, дистрибутив linux. Статические бинарники запустятся на всем. Им нужно только ядро с необходимыми опциями сборки или модулями. Но кроме бинариков в проекте используются еще и скрипты, в которых задействуются некоторые стандартные программы.
Основные причины почему нельзя просто так взять и установить эту систему на что угодно:
Если в вашей прошивке есть все необходимое, то вы можете адаптировать zapret под ваш девайс в той или иной степени. Может быть у вас не получится поднять все части системы, однако вы можете хотя бы попытаться поднять tpws и завернуть на него через -j REDIRECT весь трафик на порт 80. Если вам есть куда записать tpws, есть возможность выполнять команды при старте, то как минимум это вы сделать сможете. Скорее всего поддержка REDIRECT в ядре есть. Она точно есть на любом роутере, на других устройствах под вопросом. NFQUEUE, ipset на большинстве прошивок отсутствуют из-за ненужности.
Пересобрать ядро или модули для него будет скорее всего достаточно трудно. Для этого вам необходимо будет по крайней мере получить исходники вашей прошивки. User mode компоненты могут быть привнесены относительно безболезненно, если есть место куда их записать. Специально для девайсов, имеющих область r/w, существует проект entware. Некоторые прошивки даже имеют возможность его облегченной установки через веб интерфейс. entware содержит репозиторий user-mode компонент, которые устанавливаются в /opt. С их помощью можно компенсировать недостаток ПО основной прошивки, за исключением ядра.
Можно попытаться использовать sysv init script таким образом, как это описано в разделе "Прикручивание к системе управления фаерволом или своей системе запуска". В случае ругани на отсутствие каких-то базовых программ, их следует восполнить посредством entware. Перед запуском скрипта путь к дополнительным программам должен быть помещен в PATH.
Подробное описание настроек для других прошивок выходит за рамки данного проекта.
Openwrt является одной из немногих относительно полноценных linux систем для embedded devices. Она характеризуется следующими вещами, которые и послужили основой выбора именно этой прошивк:
Если не работает автономный обход, приходится перенаправлять трафик через сторонний хост. Предлагается использовать прозрачный редирект через socks5 посредством iptables+redsocks , либо iptables+iproute+vpn . Настройка варианта с redsocks на openwrt описана в redsocks.txt. Настройка варианта с iproute+wireguard - в wireguard_iproute_openwrt.txt.
VPS - это виртуальный сервер. Существует огромное множество датацентров, предлагающих данную услугу. На VPS могут выполняться какие угодно задачи. От простого веб сайта до навороченной системы собственной разработки. Можно использовать VPS и для поднятия собственного vpn или прокси. Сама широта возможных способов применения, распространенность услуги сводят к минимуму возможности регуляторов по бану сервисов такого типа. Да, если введут белые списки, то решение загнется, но это будет уже другая реальность, в которой придется изобретать иные решения. Пока этого не сделали, никто не будет банить хостинги просто потому, что они предоставляют хостинг услуги. Вы как индивидуум скорее всего никому не нужны. Подумайте чем вы отличаетесь от известного VPN провайдера. VPN провайдер предоставляет простую и доступную услугу по обходу блокировок для масс. Этот факт делает его первоочередной целью блокировки. РКН направит уведомление, после отказа сотрудничать заблокирует VPN. Предоплаченная сумма пропадет. У регуляторов нет и никогда не будет ресурсов для тотальной проверки каждого сервера в сети. Возможен китайский расклад, при котором DPI выявляет vpn протоколы и динамически банит IP серверов, предоставляющих нелицензированный VPN. Но имея знания, голову, вы всегда можете обфусцировать vpn трафик или применить другие типы VPN, более устойчивые к анализу на DPI или просто менее широкоизвестные, а следовательно с меньшей вероятностью обнаруживаемые регулятором. У вас есть свобода делать на вашем VPS все что вы захотите, адаптируясь к новым условиям. Да, это потребует знаний. Вам выбирать учиться и держать ситуацию под контролем, когда вам ничего запретить не могут, или покориться системе.
VPS можно прибрести в множестве мест. Существуют специализированные на поиске предложений VPS порталы.
Например, вот этот. Для персонального VPN сервера обычно достаточно самой минимальной конфигурации, но с безлимитным трафиком или с большим лимитом по трафику (терабайты). Важен и тип VPS. Openvz подойдет для openvpn, но вы не поднимете на нем wireguard, ipsec, то есть все, что требует kernel mode. Для kernel mode требуется тип виртуализации, предполагающий запуск полноценного экземпляра ОС linux вместе с ядром. Подойдут kvm, xen, hyper-v, vmware.
По цене можно найти предложения, которые будут дешевле готовой VPN услуги, но при этом вы сам хозяин в своей лавке и не рискуете попасть под бан регулятора, разве что "заодно" под ковровую бомбардировку с баном миллионов IP. Кроме того, если вам совсем все кажется сложным, прочитанное вызывает ступор и вы точно знаете, что ничего из описанного сделать не сможете, то вы сможете хотя бы использовать динамическое перенаправление портов ssh для получения шифрованного socks proxy и прописать его в броузер. Знания linux не нужны совсем. Это вариант наименее напряжный для чайников, хотя и не самый удобный в использовании.
USDT
0x3d52Ce15B7Be734c53fc9526ECbAB8267b63d66E
BTC
bc1qhqew3mrvp47uk2vevt5sctp7p2x9m7m5kkchve