
Guardar y aprender automáticamente de los resultados del experimento, lo que lleva a una optimización persistente a largo plazo que recuerda todas sus pruebas.
Hyperparameterhunter proporciona un envoltorio para algoritmos de aprendizaje automático que guarda todos los datos importantes. Simplifique la experimentación y el proceso de ajuste de hiperparameter al permitir que HyperParameterhunter haga el trabajo duro de grabar, organizar y aprender de sus pruebas, todo mientras usa las mismas bibliotecas que ya hace. No permita que ninguno de sus experimentos se desperdicie y comience a hacer la optimización de hiperparameter de la manera que debía ser.
pip install hyperparameter-hunterNo piense en Hyperparameterhunter como otra biblioteca de optimización que usted solo saca cuando es hora de hacer la optimización de hiperparameter. Por supuesto, hace optimización, pero es mejor ver HyperParameterHunter como su propia caja de herramientas/asistente de aprendizaje automático personal.
La idea es comenzar a usar HyperparameterHunter de inmediato. Ejecute todos sus experimentos de referencia/único a través de él.
Cuanto más use HyperParameterHunter, mejores serán sus resultados. Si solo lo usa para la optimización, claro, hará lo que desea, pero eso le falta el punto de Hyperparameterhunter.
Si lo ha estado utilizando para experimentación y optimización a lo largo de todo el curso de su proyecto, entonces cuando decide hacer optimización de hiperparameter, Hyperparameterhunter ya es consciente de todo lo que ha hecho, y es cuando Hyperparameterhunter hace algo notable. No comienza a la optimización desde cero como otras bibliotecas. Comienza desde todos los experimentos y rondas de optimización anteriores que ya ha realizado.
Configure un entorno para organizar experimentos y resultados de optimización.
Cualquier experimento u rondas de optimización que realicemos utilizará nuestro entorno activo.
from hyperparameter_hunter import Environment , CVExperiment
import pandas as pd
from sklearn . datasets import load_breast_cancer
from sklearn . model_selection import StratifiedKFold
data = load_breast_cancer ()
df = pd . DataFrame ( data = data . data , columns = data . feature_names )
df [ 'target' ] = data . target
env = Environment (
train_dataset = df , # Add holdout/test dataframes, too
results_path = 'path/to/results/directory' , # Where your result files will go
metrics = [ 'roc_auc_score' ], # Callables, or strings referring to `sklearn.metrics`
cv_type = StratifiedKFold , # Class, or string in `sklearn.model_selection`
cv_params = dict ( n_splits = 5 , shuffle = True , random_state = 32 )
)Realice experimentos con sus bibliotecas favoritas simplemente proporcionando inicializadores de modelos e hiperparametros
# Same format used by `keras.wrappers.scikit_learn`. Nothing new to learn
def build_fn ( input_shape ): # `input_shape` calculated for you
model = Sequential ([
Dense ( 100 , kernel_initializer = 'uniform' , input_shape = input_shape , activation = 'relu' ),
Dropout ( 0.5 ),
Dense ( 1 , kernel_initializer = 'uniform' , activation = 'sigmoid' )
]) # All layer arguments saved (whether explicit or Keras default) for future use
model . compile ( optimizer = 'adam' , loss = 'binary_crossentropy' , metrics = [ 'accuracy' ])
return model
experiment = CVExperiment (
model_initializer = KerasClassifier ,
model_init_params = build_fn , # We interpret your build_fn to save hyperparameters in a useful, readable format
model_extra_params = dict (
callbacks = [ ReduceLROnPlateau ( patience = 5 )], # Use Keras callbacks
batch_size = 32 , epochs = 10 , verbose = 0 # Fit/predict arguments
)
) experiment = CVExperiment (
model_initializer = LinearSVC , # (Or any of the dozens of other SK-Learn algorithms)
model_init_params = dict ( penalty = 'l1' , C = 0.9 ) # Default values used and recorded for kwargs not given
) experiment = CVExperiment (
model_initializer = XGBClassifier ,
model_init_params = dict ( objective = 'reg:linear' , max_depth = 3 , n_estimators = 100 , subsample = 0.5 )
) experiment = CVExperiment (
model_initializer = LGBMClassifier ,
model_init_params = dict ( boosting_type = 'gbdt' , num_leaves = 31 , max_depth = - 1 , min_child_samples = 5 , subsample = 0.5 )
) experiment = CVExperiment (
model_initializer = CatboostClassifier ,
model_init_params = dict ( iterations = 500 , learning_rate = 0.01 , depth = 7 , allow_writing_files = False ),
model_extra_params = dict ( fit = dict ( verbose = True )) # Send kwargs to `fit` and other extra methods
) experiment = CVExperiment (
model_initializer = RGFClassifier ,
model_init_params = dict ( max_leaf = 1000 , algorithm = 'RGF' , min_samples_leaf = 10 )
)Al igual que los experimentos, pero si desea optimizar un hiperparámetro, use las clases importadas a continuación
from hyperparameter_hunter import Real , Integer , Categorical
from hyperparameter_hunter import optimization as opt def build_fn ( input_shape ):
model = Sequential ([
Dense ( Integer ( 50 , 150 ), input_shape = input_shape , activation = 'relu' ),
Dropout ( Real ( 0.2 , 0.7 )),
Dense ( 1 , activation = Categorical ([ 'sigmoid' , 'softmax' ]))
])
model . compile (
optimizer = Categorical ([ 'adam' , 'rmsprop' , 'sgd' , 'adadelta' ]),
loss = 'binary_crossentropy' , metrics = [ 'accuracy' ]
)
return model
optimizer = opt . RandomForestOptPro ( iterations = 7 )
optimizer . forge_experiment (
model_initializer = KerasClassifier ,
model_init_params = build_fn ,
model_extra_params = dict (
callbacks = [ ReduceLROnPlateau ( patience = Integer ( 5 , 10 ))],
batch_size = Categorical ([ 32 , 64 ]),
epochs = 10 , verbose = 0
)
)
optimizer . go () optimizer = opt . DummyOptPro ( iterations = 42 )
optimizer . forge_experiment (
model_initializer = AdaBoostClassifier , # (Or any of the dozens of other SKLearn algorithms)
model_init_params = dict (
n_estimators = Integer ( 75 , 150 ),
learning_rate = Real ( 0.8 , 1.3 ),
algorithm = 'SAMME.R'
)
)
optimizer . go () optimizer = opt . BayesianOptPro ( iterations = 10 )
optimizer . forge_experiment (
model_initializer = XGBClassifier ,
model_init_params = dict (
max_depth = Integer ( low = 2 , high = 20 ),
learning_rate = Real ( 0.0001 , 0.5 ),
n_estimators = 200 ,
subsample = 0.5 ,
booster = Categorical ([ 'gbtree' , 'gblinear' , 'dart' ]),
)
)
optimizer . go () optimizer = opt . BayesianOptPro ( iterations = 100 )
optimizer . forge_experiment (
model_initializer = LGBMClassifier ,
model_init_params = dict (
boosting_type = Categorical ([ 'gbdt' , 'dart' ]),
num_leaves = Integer ( 5 , 20 ),
max_depth = - 1 ,
min_child_samples = 5 ,
subsample = 0.5
)
)
optimizer . go () optimizer = opt . GradientBoostedRegressionTreeOptPro ( iterations = 32 )
optimizer . forge_experiment (
model_initializer = CatBoostClassifier ,
model_init_params = dict (
iterations = 100 ,
eval_metric = Categorical ([ 'Logloss' , 'Accuracy' , 'AUC' ]),
learning_rate = Real ( low = 0.0001 , high = 0.5 ),
depth = Integer ( 4 , 7 ),
allow_writing_files = False
)
)
optimizer . go () optimizer = opt . ExtraTreesOptPro ( iterations = 10 )
optimizer . forge_experiment (
model_initializer = RGFClassifier ,
model_init_params = dict (
max_leaf = 1000 ,
algorithm = Categorical ([ 'RGF' , 'RGF_Opt' , 'RGF_Sib' ]),
l2 = Real ( 0.01 , 0.3 ),
normalize = Categorical ([ True , False ]),
learning_rate = Real ( 0.3 , 0.7 ),
loss = Categorical ([ 'LS' , 'Expo' , 'Log' , 'Abs' ])
)
)
optimizer . go () Esta es una ilustración simple de la estructura del archivo que puede esperar que generen sus Experiment . Para obtener una descripción en profundidad de la estructura del directorio y el contenido de los diversos archivos, consulte la sección Descripción general de la estructura del archivo en la documentación. Sin embargo, los elementos esenciales son los siguientes:
Experiment agrega un archivo a cada subdirectorio de HyperparameterhunterAssets/Experiments , nombrado por experiment_idExperiment también agrega una entrada a HyperParameterhunterassets/Riadingboards/GlobalLeaderboard.csvfile_blacklist y do_full_save kwargs de Environment (documentado aquí) HyperparameterHunterAssets
| Heartbeat.log
|
└───Experiments
| |
| └───Descriptions
| | | <Files describing Experiment results, conditions, etc.>.json
| |
| └───Predictions<OOF/Holdout/Test>
| | | <Files containing Experiment predictions for the indicated dataset>.csv
| |
| └───Heartbeats
| | | <Files containing the log produced by the Experiment>.log
| |
| └───ScriptBackups
| | <Files containing a copy of the script that created the Experiment>.py
|
└───Leaderboards
| | GlobalLeaderboard.csv
| | <Other leaderboards>.csv
|
└───TestedKeys
| | <Files named by Environment key, containing hyperparameter keys>.json
|
└───KeyAttributeLookup
| <Files linking complex objects used in Experiments to their hashes>
pip install hyperparameter-hunter
Si te gusta estar en la vanguardia y quieres todos los desarrollos más recientes, ejecute:
pip install git+https://github.com/HunterMcGushion/hyperparameter_hunter.git
Si desea contribuir a HyperparameterHunter, comience aquí.
Eso está bien. No te sientas mal. Es un poco extraño envolver la cabeza. Aquí hay un ejemplo que ilustra cómo está todo relacionado:
from hyperparameter_hunter import Environment , CVExperiment , BayesianOptPro , Integer
from hyperparameter_hunter . utils . learning_utils import get_breast_cancer_data
from xgboost import XGBClassifier
# Start by creating an `Environment` - This is where you define how Experiments (and optimization) will be conducted
env = Environment (
train_dataset = get_breast_cancer_data ( target = 'target' ),
results_path = 'HyperparameterHunterAssets' ,
metrics = [ 'roc_auc_score' ],
cv_type = 'StratifiedKFold' ,
cv_params = dict ( n_splits = 10 , shuffle = True , random_state = 32 ),
)
# Now, conduct an `Experiment`
# This tells HyperparameterHunter to use the settings in the active `Environment` to train a model with these hyperparameters
experiment = CVExperiment (
model_initializer = XGBClassifier ,
model_init_params = dict (
objective = 'reg:linear' ,
max_depth = 3
)
)
# That's it. No annoying boilerplate code to fit models and record results
# Now, the `Environment`'s `results_path` directory will contain new files describing the Experiment just conducted
# Time for the fun part. We'll set up some hyperparameter optimization by first defining the `OptPro` (Optimization Protocol) we want
optimizer = BayesianOptPro ( verbose = 1 )
# Now we're going to say which hyperparameters we want to optimize.
# Notice how this looks just like our `experiment` above
optimizer . forge_experiment (
model_initializer = XGBClassifier ,
model_init_params = dict (
objective = 'reg:linear' , # We're setting this as a constant guideline - Not one to optimize
max_depth = Integer ( 2 , 10 ) # Instead of using an int like the `experiment` above, we provide a space to search
)
)
# Notice that our range for `max_depth` includes the `max_depth=3` value we used in our `experiment` earlier
optimizer . go () # Now, we go
assert experiment . experiment_id in [ _ [ 2 ] for _ in optimizer . similar_experiments ]
# Here we're verifying that the `experiment` we conducted first was found by `optimizer` and used as learning material
# You can also see via the console that we found `experiment`'s saved files, and used it to start optimization
last_experiment_id = optimizer . current_experiment . experiment_id
# Let's save the id of the experiment that was just conducted by `optimizer`
optimizer . go () # Now, we'll start up `optimizer` again...
# And we can see that this second optimization round learned from both our first `experiment` and our first optimization round
assert experiment . experiment_id in [ _ [ 2 ] for _ in optimizer . similar_experiments ]
assert last_experiment_id in [ _ [ 2 ] for _ in optimizer . similar_experiments ]
# It even did all this without us having to tell it what experiments to learn from
# Now think about how much better your hyperparameter optimization will be when it learns from:
# - All your past experiments, and
# - All your past optimization rounds
# And the best part: HyperparameterHunter figures out which experiments are compatible all on its own
# You don't have to worry about telling it that KFold=5 is different from KFold=10,
# Or that max_depth=12 is outside of max_depth=Integer(2, 10) Estas son algunas cosas que podrían "Getcha"
OptPro ?CVExperiment antes de inicializar su OptProExperiment se ajuste dentro del espacio de búsqueda definido por su OptPro , el optimizador se ubicará y leerá en los resultados del ExperimentExperiment después de haberlo hecho una vez, ya que los resultados se han guardado. Dejarlo allí simplemente ejecutará el mismo Experiment una y otra vezActivation separada y proporcionar una capa Dense con la activation kwargDense(10, activation='sigmoid')Dense(10); Activation('sigmoid')Activation separadas o proporcione Kwargs activation a otras capas, y quédese con ello!optimizer_params No optimizer puede optimizar el model.compile .optimizers de Keras esperan diferentes argumentosoptimizer=Categorical(['adam', 'rmsprop']) , hay dos dictados posibles diferentes de optimizer_paramsoptimizer y optimizer_params por separadooptimizer_params . De esa manera, cada optimizer utilizará sus parámetros predeterminadosoptimizer fue el mejor y establecer optimizer=<best optimizer> , luego pasar a ajustar optimizer_params , con argumentos específicos para el optimizer que seleccionó__init__ de modelo de Catboost se definen en otro lugar, y se dan los valores de marcador de posición de None en sus firmasNone si no proporciona explícitamente un valor para ese argumento