(ECD) is A lightweight, Mac-optimized implementation of ChromaDB designed for multimodal document embeddings. Built specifically for fast RAG (Retrieval-Augmented Generation) pipelines, this tool seamlessly handles text, images, and mixed-media documents with minimal setup.
️ Note: Dependencies and requirements packaging are under active development.
requirements.txt# Install Xcode Command Line Tools
xcode-select --install
# Install Homebrew
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"git clone https://github.com/yourusername/EasyChromaDirectories.git
cd EasyChromaDirectories
pip install -r requirements.txt? Development Notice: Package management and dependency resolution are being actively improved. Some manual setup might be required.
from easychromadb import DocumentEncoder
encoder = DocumentEncoder(collection_name="assets")# Process a single document
encoder.process_file("path/to/document.txt")
# Process an entire directory
encoder.process_directory("path/to/documents/")results = encoder.query("your search query here")
for result in results:
print(f"Document: {result.name}")
print(f"Similarity: {result.score}")No Python experience required! Use these simple commands to manage your documents:
# Process a directory of documents
python Chromav4_Encode_documents.py your_directory/
# Example:
python Chromav4_Encode_documents.py assets_ChromaDB_Vec/# List all documents in the collection
python Chromav4_Encode_documents.py your_directory/ --list
# Example output:
# Collection: assets
# Total Documents: 6
# +-----+----------------+--------+---------------+
# | # | ID | Type | Name |
# +=====+================+========+===============+
# | 1 | txt_0_2288d1ca | TEXT | doc1.txt |
# | 2 | txt_1_c2ecec13 | TEXT | doc2.txt |
# ...# Search with a query and specify number of results
python Chromav4_Encode_documents.py your_directory/ --query "your search query" --n_results 2
# Example:
python Chromav4_Encode_documents.py assets_ChromaDB_Vec/ --query "Why is the sky blue?" --n_results 2# Partial word matching
python Chromav4_Encode_documents.py your_directory/ --query "Who's the _____ uncle" --n_results 1
# Image and text combined search
python Chromav4_Encode_documents.py your_directory/ --query "Find similar images and text about nature"The CLI will automatically:
The project includes comprehensive tests covering:
Run tests using:
pytest test_Chromav4_Encode_documents.pyContributions are welcome! Please follow these steps:
git checkout -b feature/amazing-feature)git commit -m 'Add amazing feature')git push origin feature/amazing-feature)This project is licensed under the Apache License 2.0 - see the LICENSE file for details.
Built with ❤️ for the document processing community