AudioMAE pytorch
1.0.0
Dieses Repo ist eine inoffizielle Implementierung von papiermaskierten Autocoder, die zuhören. Audio-Mae codiert zuerst Audiospektrogramm-Patches mit einem hohen Maskierungsverhältnis und füttert nur die nicht maskierten Token über Encoder-Schichten. Der Decoder erstellt und dekodiert dann den mit Masken-Token gepolsterten codierten Kontext, um das Eingangsspektrogramm zu rekonstruieren. 
import torch
from audio_mae import AudioMaskedAutoencoderViT
audio_mels = torch . ones ([ 2 , 1 , 1024 , 128 ])
# Paper recommended archs
model = AudioMaskedAutoencoderViT (
num_mels = 128 , mel_len = 1024 , in_chans = 1 ,
patch_size = 16 , embed_dim = 768 , encoder_depth = 12 , num_heads = 12 ,
decoder_embed_dim = 512 , decoder_depth = 16 , decoder_num_heads = 16 ,
mlp_ratio = 4 , norm_layer = partial ( nn . LayerNorm , eps = 1e-6 ))
loss , pred , mask = model ( audio_mels ) @misc{https://doi.org/10.48550/arxiv.2207.06405,
doi = {10.48550/ARXIV.2207.06405},
url = {https://arxiv.org/abs/2207.06405},
author = {Huang, Po-Yao and Xu, Hu and Li, Juncheng and Baevski, Alexei and Auli, Michael and Galuba, Wojciech and Metze, Florian and Feichtenhofer, Christoph},
keywords = {Sound (cs.SD), Artificial Intelligence (cs.AI), Machine Learning (cs.LG), Audio and Speech Processing (eess.AS), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering},
title = {Masked Autoencoders that Listen},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
@misc{https://doi.org/10.48550/arxiv.2203.16691,
doi = {10.48550/ARXIV.2203.16691},
url = {https://arxiv.org/abs/2203.16691},
author = {Baade, Alan and Peng, Puyuan and Harwath, David},
keywords = {Audio and Speech Processing (eess.AS), Artificial Intelligence (cs.AI), Computation and Language (cs.CL), Machine Learning (cs.LG), Sound (cs.SD), FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {MAE-AST: Masked Autoencoding Audio Spectrogram Transformer},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}