pointer_summarizer
1.0.0
تنفيذ Pytorch للوصول إلى النقطة: تلخيص مع شبكات المولود للمؤشر
بعد التدريب مقابل تكرارات 100 ألف مع تمكين فقدان التغطية (حجم الدُفعة 8)
ROUGE-1:
rouge_1_f_score: 0.3907 with confidence interval (0.3885, 0.3928)
rouge_1_recall: 0.4434 with confidence interval (0.4410, 0.4460)
rouge_1_precision: 0.3698 with confidence interval (0.3672, 0.3721)
ROUGE-2:
rouge_2_f_score: 0.1697 with confidence interval (0.1674, 0.1720)
rouge_2_recall: 0.1920 with confidence interval (0.1894, 0.1945)
rouge_2_precision: 0.1614 with confidence interval (0.1590, 0.1636)
ROUGE-l:
rouge_l_f_score: 0.3587 with confidence interval (0.3565, 0.3608)
rouge_l_recall: 0.4067 with confidence interval (0.4042, 0.4092)
rouge_l_precision: 0.3397 with confidence interval (0.3371, 0.3420)

بعد التدريب مقابل تكرارات 500 ألف (حجم الدُفعة 8)
ROUGE-1:
rouge_1_f_score: 0.3500 with confidence interval (0.3477, 0.3523)
rouge_1_recall: 0.3718 with confidence interval (0.3693, 0.3745)
rouge_1_precision: 0.3529 with confidence interval (0.3501, 0.3555)
ROUGE-2:
rouge_2_f_score: 0.1486 with confidence interval (0.1465, 0.1508)
rouge_2_recall: 0.1573 with confidence interval (0.1551, 0.1597)
rouge_2_precision: 0.1506 with confidence interval (0.1483, 0.1529)
ROUGE-l:
rouge_l_f_score: 0.3202 with confidence interval (0.3179, 0.3225)
rouge_l_recall: 0.3399 with confidence interval (0.3374, 0.3426)
rouge_l_precision: 0.3231 with confidence interval (0.3205, 0.3256)

ملحوظة:
في وضع Decode Mode Beam Search Batch ، يجب أن يكون هناك مثال واحد فقط متماثل على حجم الدُفعة https://github.com/atulkum/pointer_summarizer/blob/master/training_ptr_gen/decode.py#l109 https://github.com/atulkum/pointer_summarizer
يتم اختباره على Pytorch 0.4 مع Python 2.7
تحتاج إلى إعداد Pyrouge للحصول على درجة Rouge