本文主要講的是並發包中涉及到的集合,關於普通集合,請參考【java 集合概覽】
一、什麼是BlockingQueue
BlockingQueue即阻塞隊列,從阻塞這個詞可以看出,在某些情況下對阻塞隊列的訪問可能會造成阻塞。被阻塞的情況主要有如下兩種:
1. 當隊列滿了的時候進行入隊列操作
2. 當隊列空了的時候進行出隊列操作
因此,當一個線程試圖對一個已經滿了的隊列進行入隊列操作時,它將會被阻塞,除非有另一個線程做了出隊列操作;同樣,當一個線程試圖對一個空隊列進行出隊列操作時,它將會被阻塞,除非有另一個線程進行了入隊列操作。
在Java中,BlockingQueue的接口位於java.util.concurrent包中(在Java5版本開始提供),由上面介紹的阻塞隊列的特性可知,阻塞隊列是線程安全的。
二、BlockingQueue的用法
阻塞隊列主要用在生產者/消費者的場景,下面這幅圖展示了一個線程生產、一個線程消費的場景:
負責生產的線程不斷的製造新對象並插入到阻塞隊列中,直到達到這個隊列的上限值。隊列達到上限值之後生產線程將會被阻塞,直到消費的線程對這個隊列進行消費。同理,負責消費的線程不斷的從隊列中消費對象,直到這個隊列為空,當隊列為空時,消費線程將會被阻塞,除非隊列中有新的對像被插入。
三、BlockingQueue接口中的方法
阻塞隊列一共有四套方法分別用來進行insert 、 remove和examine ,當每套方法對應的操作不能馬上執行時會有不同的反應,下面這個表格就分類列出了這些方法:
| - | Throws Exception | Special Value | Blocks | Times Out |
|---|---|---|---|---|
| Insert | add(o) | offer(o) | put(o) | offer(o, timeout, timeunit) |
| Remove | remove(o) | poll() | take() | poll(timeout, timeunit) |
| Examine | element() | peek() |
這四套方法對應的特點分別是:
1. ThrowsException:如果操作不能馬上進行,則拋出異常
2. SpecialValue:如果操作不能馬上進行,將會返回一個特殊的值,一般是true或者false
3. Blocks:如果操作不能馬上進行,操作會被阻塞
4. TimesOut:如果操作不能馬上進行,操作會被阻塞指定的時間,如果指定時間沒執行,則返回一個特殊值,一般是true或者false
需要注意的是,我們不能向BlockingQueue中插入null ,否則會報NullPointerException 。
四、BlockingQueue的實現類
BlockingQueue只是java.util.concurrent包中的一個接口,而在具體使用時,我們用到的是它的實現類,當然這些實現類也位於java.util.concurrent包中。在Java6中,BlockingQueue的實現類主要有以下幾種:
1. ArrayBlockingQueue
2. DelayQueue
3. LinkedBlockingQueue
4. PriorityBlockingQueue
5. SynchronousQueue
下面我們就分別介紹這幾個實現類。
4.1 ArrayBlockingQueue
ArrayBlockingQueue是一個有邊界的阻塞隊列,它的內部實現是一個數組。有邊界的意思是它的容量是有限的,我們必須在其初始化的時候指定它的容量大小,容量大小一旦指定就不可改變。
ArrayBlockingQueue是以先進先出的方式存儲數據,最新插入的對像是尾部,最新移出的對像是頭部。下面是一個初始化和使用ArrayBlockingQueue的例子:
BlockingQueue queue = new ArrayBlockingQueue(1024);queue.put("1");Object object = queue.take();4.2 DelayQueue
DelayQueue阻塞的是其內部元素,DelayQueue中的元素必須實現java.util.concurrent.Delayed接口,這個接口的定義非常簡單:
public interface Delayed extends Comparable<Delayed> {long getDelay(TimeUnit unit);} getDelay()方法的返回值就是隊列元素被釋放前的保持時間,如果返回0或者一個负值,就意味著該元素已經到期需要被釋放,此時DelayedQueue會通過其take()方法釋放此對象。
從上面Delayed 接口定義可以看到,它還繼承了Comparable接口,這是因為DelayedQueue中的元素需要進行排序,一般情況,我們都是按元素過期時間的優先級進行排序。
例1:為一個對象指定過期時間
首先,我們先定義一個元素,這個元素要實現Delayed接口
public class DelayedElement implements Delayed { private long expired; private long delay; private String name; DelayedElement(String elementName, long delay) { this. name = elementName; this. delay= delay; expired = ( delay + System. currentTimeMillis()); } @Override public int compareTo(Delayed o) { DelayedElement cached=(DelayedElement) o; return cached.getExpired()> expired?1:-1; } @Override public long getDelay(TimeUnit unit) { return ( expired - System. currentTimeMillis()); } @Override public String toString() { return "DelayedElement [delay=" + delay + ", name=" + name + "]"; } public long getExpired() { return expired; }}設置這個元素的過期時間為3s
public class DelayQueueExample { public static void main(String[] args) throws InterruptedException { DelayQueue<DelayedElement> queue= new DelayQueue<>(); DelayedElement ele= new DelayedElement( "cache 3 seconds",3000); queue.put( ele); System. out.println( queue.take()); }}運行這個main函數,我們可以發現,我們需要等待3s之後才會打印這個對象。
其實DelayQueue應用場景很多,比如定時關閉連接、緩存對象,超時處理等各種場景,下面我們就拿學生考試為例讓大家更深入的理解DelayQueue的使用。
例2:把所有考試的學生看做是一個DelayQueue,誰先做完題目釋放誰
首先,我們構造一個學生對象
public class Student implements Runnable,Delayed{ private String name; //姓名private long costTime;//做試題的時間private long finishedTime;//完成時間public Student(String name, long costTime) { this. name = name; this. costTime= costTime; finishedTime = costTime + System. currentTimeMillis(); } @Override public void run() { System. out.println( name + " 交卷,用時" + costTime /1000); } @Override public long getDelay(TimeUnit unit) { return ( finishedTime - System. currentTimeMillis()); } @Override public int compareTo(Delayed o) { Student other = (Student) o; return costTime >= other. costTime?1:-1; }}然後在構造一個教師對像對學生進行考試
public class Teacher { static final int STUDENT_SIZE = 30; public static void main(String[] args) throws InterruptedException { Random r = new Random(); //把所有學生看做一個延遲隊列DelayQueue<Student> students = new DelayQueue<Student>(); //構造一個線程池用來讓學生們“做作業” ExecutorService exec = Executors.newFixedThreadPool(STUDENT_SIZE); for ( int i = 0; i < STUDENT_SIZE; i++) { //初始化學生的姓名和做題時間students.put( new Student( "學生" + (i + 1), 3000 + r.nextInt(10000))); } //開始做題while(! students.isEmpty()){ exec.execute( students.take()); } exec.shutdown(); }}我們看一下運行結果:
學生2 交卷,用時3
學生1 交卷,用時5
學生5 交卷,用時7
學生4 交卷,用時8
學生3 交卷,用時11
通過運行結果我們可以發現,每個學生在指定開始時間到達之後就會“交卷”(取決於getDelay()方法),並且是先做完的先交卷(取決於compareTo()方法)。
通過查看其源碼可以看到,DelayQueue內部實現用的是PriorityQueue和一個Lock:
4.3 LinkedBlockingQueue
LinkedBlockingQueue阻塞隊列大小的配置是可選的,如果我們初始化時指定一個大小,它就是有邊界的,如果不指定,它就是無邊界的。說是無邊界,其實是採用了默認大小為Integer.MAX_VALUE的容量。它的內部實現是一個鍊錶。
和ArrayBlockingQueue一樣,LinkedBlockingQueue 也是以先進先出的方式存儲數據,最新插入的對像是尾部,最新移出的對像是頭部。下面是一個初始化和使LinkedBlockingQueue的例子:
BlockingQueue<String> unbounded = new LinkedBlockingQueue<String>();BlockingQueue<String> bounded = new LinkedBlockingQueue<String>(1024);bounded.put("Value");String value = bounded.take();4.4 PriorityBlockingQueue
PriorityBlockingQueue是一個沒有邊界的隊列,它的排序規則和java.util.PriorityQueue一樣。需要注意,PriorityBlockingQueue中允許插入null對象。
所有插入PriorityBlockingQueue的對象必須實現java.lang.Comparable接口,隊列優先級的排序規則就是按照我們對這個接口的實現來定義的。
另外,我們可以從PriorityBlockingQueue獲得一個迭代器Iterator,但這個迭代器並不保證按照優先級順序進行迭代。
下面我們舉個例子來說明一下,首先我們定義一個對像類型,這個對象需要實現Comparable接口:
public class PriorityElement implements Comparable<PriorityElement> {private int priority;//定義優先級PriorityElement(int priority) { //初始化優先級this.priority = priority;}@Overridepublic int compareTo(PriorityElement o) { //按照優先級大小進行排序return priority >= o.getPriority() ? 1 : -1;}public int getPriority() { return priority;}public void setPriority(int priority) { this.priority = priority;}@Overridepublic String toString() { return "PriorityElement [priority=" + priority + "]";}}然後我們把這些元素隨機設置優先級放入隊列中
public class PriorityBlockingQueueExample {public static void main(String[] args) throws InterruptedException { PriorityBlockingQueue<PriorityElement> queue = new PriorityBlockingQueue<>(); for (int i = 0; i < 5; i++) { Random random=new Random(); PriorityElement ele = new PriorityElement(random.nextInt(10)); queue.put(ele); } while(!queue.isEmpty()){ System.out.println(queue.take()); }}}看一下運行結果:
PriorityElement [priority=3]
PriorityElement [priority=4]
PriorityElement [priority=5]
PriorityElement [priority=8]
PriorityElement [priority=9]
4.5 SynchronousQueue
SynchronousQueue隊列內部僅允許容納一個元素。當一個線程插入一個元素後會被阻塞,除非這個元素被另一個線程消費。
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持武林網。