PoliBERTweet
1.0.0
基於變壓器的語言模型已通過大量與政治相關的Twitter數據(8300萬推文)進行了預訓練。此存儲庫是以下論文的官方資源。
我們論文中介紹的評估任務的數據集如下提供。
所有型號都上傳到我的擁抱面?因此,您只需三行代碼加載模型! ! !
我們在pytorch v1.10.2和transformers v4.18.0中進行了測試。
from transformers import AutoModel , AutoTokenizer , pipeline
import torch
# Choose GPU if available
device = torch . device ( "cuda" if torch . cuda . is_available () else "cpu" )
# Select mode path here
pretrained_LM_path = "kornosk/polibertweet-mlm"
# Load model
tokenizer = AutoTokenizer . from_pretrained ( pretrained_LM_path )
model = AutoModel . from_pretrained ( pretrained_LM_path ) # Fill mask
example = "Trump is the <mask> of USA"
fill_mask = pipeline ( 'fill-mask' , model = pretrained_LM_path , tokenizer = tokenizer )
outputs = fill_mask ( example )
print ( outputs ) # See embeddings
inputs = tokenizer ( example , return_tensors = "pt" )
outputs = model ( ** inputs )
print ( outputs )
# OR you can use this model to train on your downstream task!
# please consider citing our paper if you feel this is useful :)請參閱“擁抱面文檔”中的詳細信息。
如果您認為我們的紙張和資源很有用,請考慮引用我們的作品!
@inproceedings { kawintiranon2022polibertweet ,
title = { {P}oli{BERT}weet: A Pre-trained Language Model for Analyzing Political Content on {T}witter } ,
author = { Kawintiranon, Kornraphop and Singh, Lisa } ,
booktitle = { Proceedings of the Language Resources and Evaluation Conference (LREC) } ,
year = { 2022 } ,
pages = { 7360--7367 } ,
publisher = { European Language Resources Association } ,
url = { https://aclanthology.org/2022.lrec-1.801 }
}如果您有任何問題加載模型或數據集,請在此處創建問題。