
檢查Lora文件以獲取元信息和洛拉權重的定量分析。
safetensors (要支持所有lora文件)請注意,這是一項正在進行的工作,並不是為了生產使用。筆記
考慮使用新的Web界面LORA檢查員進行GUI表示。
克隆此回購或下載Python腳本文件。
需要依賴性:
torch
safetensors
tqdm
可以安裝它們之一:
venv )。受到推崇的pip install safetensors tqdm (有關如何安裝Pytorch的說明,請參見“請參見開始”) $ python lora-inspector.py --help
usage: lora-inspector.py [-h] [-s] [-w] [-t] [-d] lora_file_or_dir
positional arguments:
lora_file_or_dir Directory containing the lora files
options:
-h, --help show this help message and exit
-s, --save_meta Should we save the metadata to a file ?
-w, --weights Show the average magnitude and strength of the weights
-t, --tags Show the most common tags in the training set
-d, --dataset Show the dataset metadata including directory names and number of images您可以添加目錄或文件:
$ python lora-inspector.py /mnt/900/training/sets/landscape-2023-11-06-200718-e4d7120b -w
/mnt/900/training/sets/landscape-2023-11-06-200718-e4d7120b/landscape-2023-11-06-200718-e4d7120b-000015.safetensors
Date: 2023-11-06T20:16:34 Title: landscape
License: CreativeML Open RAIL-M Author: rockerBOO
Description: High quality landscape photos
Resolution: 512x512 Architecture: stable-diffusion-v1/lora
Network Dim/Rank: 16.0 Alpha: 8.0 Dropout: 0.3 dtype: torch.float32
Module: networks.lora : { ' block_dims ' : ' 4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8 ' , ' block_alphas ' : ' 16,16,16,16,16,16,16,16,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32 ' , ' block_dropout ' : ' 0.01, 0.010620912260804992, 0.01248099020159499, 0.015572268683063176, 0.01988151037617019, 0.02539026244641935, 0.032074935571726845, 0.03990690495552037, 0.04885263290251277, 0.058873812432261884, 0.0699275313155418, 0.08196645583109653, 0.09493903345590124, 0.10878971362098, 0.12345918558747097, 0.13888463242431537, 0.155, 0.17173627983648962, 0.18902180461412393, 0.20678255506208312, 0.22494247692026895, 0.2434238066153228, 0.26214740425618505, 0.2810330925232585 ' , ' dropout ' : 0.3}
Learning Rate (LR): 2e-06 UNet LR: 1.0 TE LR: 1.0
Optimizer: prodigyopt.prodigy.Prodigy(weight_decay=0.1,betas=(0.9, 0.9999),d_coef=1.5,use_bias_correction=True)
Scheduler: cosine Warmup steps: 0
Epoch: 15 Batches per epoch: 57 Gradient accumulation steps: 24
Train images: 57 Regularization images: 0
Noise offset: 0.05 Adaptive noise scale: 0.01 IP noise gamma: 0.1 Multires noise discount: 0.3
Min SNR gamma: 5.0 Zero terminal SNR: True Debiased Estimation: True
UNet weight average magnitude: 0.7865518983141094
UNet weight average strength: 0.00995593195090544
No Text Encoder found in this LoRA
----------------------
/mnt/900/training/sets/landscape-2023-11-06-200718-e4d7120b/landscape-2023-11-06-200718-e4d7120b.safetensors
Date: 2023-11-06T20:27:12 Title: landscape
License: CreativeML Open RAIL-M Author: rockerBOO
Description: High quality landscape photos
Resolution: 512x512 Architecture: stable-diffusion-v1/lora
Network Dim/Rank: 16.0 Alpha: 8.0 Dropout: 0.3 dtype: torch.float32
Module: networks.lora : { ' block_dims ' : ' 4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8 ' , ' block_alphas ' : ' 16,16,16,16,16,16,16,16,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32 ' , ' block_dropout ' : ' 0.01, 0.010620912260804992, 0.01248099020159499, 0.015572268683063176, 0.01988151037617019, 0.02539026244641935, 0.032074935571726845, 0.03990690495552037, 0.04885263290251277, 0.058873812432261884, 0.0699275313155418, 0.08196645583109653, 0.09493903345590124, 0.10878971362098, 0.12345918558747097, 0.13888463242431537, 0.155, 0.17173627983648962, 0.18902180461412393, 0.20678255506208312, 0.22494247692026895, 0.2434238066153228, 0.26214740425618505, 0.2810330925232585 ' , ' dropout ' : 0.3}
Learning Rate (LR): 2e-06 UNet LR: 1.0 TE LR: 1.0
Optimizer: prodigyopt.prodigy.Prodigy(weight_decay=0.1,betas=(0.9, 0.9999),d_coef=1.5,use_bias_correction=True)
Scheduler: cosine Warmup steps: 0
Epoch: 30 Batches per epoch: 57 Gradient accumulation steps: 24
Train images: 57 Regularization images: 0
Noise offset: 0.05 Adaptive noise scale: 0.01 IP noise gamma: 0.1 Multires noise discount: 0.3
Min SNR gamma: 5.0 Zero terminal SNR: True Debiased Estimation: True
UNet weight average magnitude: 0.8033398082829257
UNet weight average strength: 0.010114916750103732
No Text Encoder found in this LoRA
----------------------$ python lora-inspector.py /mnt/900/lora/testing/landscape-2023-11-06-200718-e4d7120b.safetensors
/mnt/900/lora/testing/landscape-2023-11-06-200718-e4d7120b.safetensors
Date: 2023-11-06T20:27:12 Title: landscape
License: CreativeML Open RAIL-M Author: rockerBOO
Description: High quality landscape photos
Resolution: 512x512 Architecture: stable-diffusion-v1/lora
Network Dim/Rank: 16.0 Alpha: 8.0 Dropout: 0.3 dtype: torch.float32
Module: networks.lora : { ' block_dims ' : ' 4,4,4,4,4,4,4,4,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8 ' , ' block_alphas ' : ' 16,16,16,16,16,16,16,16,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32 ' , ' block_dropout ' : ' 0.01, 0.010620912260804992, 0.01248099020159499, 0.015572268683063176, 0.01988151037617019, 0.02539026244641935, 0.032074935571726845, 0.03990690495552037, 0.04885263290251277, 0.058873812432261884, 0.0699275313155418, 0.08196645583109653, 0.09493903345590124, 0.10878971362098, 0.12345918558747097, 0.13888463242431537, 0.155, 0.17173627983648962, 0.18902180461412393, 0.20678255506208312, 0.22494247692026895, 0.2434238066153228, 0.26214740425618505, 0.2810330925232585 ' , ' dropout ' : 0.3}
Learning Rate (LR): 2e-06 UNet LR: 1.0 TE LR: 1.0
Optimizer: prodigyopt.prodigy.Prodigy(weight_decay=0.1,betas=(0.9, 0.9999),d_coef=1.5,use_bias_correction=True)
Scheduler: cosine Warmup steps: 0
Epoch: 30 Batches per epoch: 57 Gradient accumulation steps: 24
Train images: 57 Regularization images: 0
Noise offset: 0.05 Adaptive noise scale: 0.01 IP noise gamma: 0.1 Multires noise discount: 0.3
Min SNR gamma: 5.0 Zero terminal SNR: True Debiased Estimation: True
UNet weight average magnitude: 0.8033398082829257
UNet weight average strength: 0.010114916750103732
No Text Encoder found in this LoRA
----------------------我們還支持保存從字符串中提取和轉換的元數據。然後,我們可以將它們保存到JSON文件中。這些將將元數據保存到當前工作目錄中的meta/alorafile.safetensors-{session_id}.json 。
$ python lora-inspector.py ~ /loras/alorafile.safetensors --save_meta$ python lora-inspector.py /mnt/900/training/cyberpunk-anime-21-min-snr/unet-1.15-te-1.15-noise-0.1-steps--linear-DAdaptation-networks.lora/last.safetensors --save_meta
/mnt/900/training/cyberpunk-anime-21-min-snr/unet-1.15-te-1.15-noise-0.1-steps--linear-DAdaptation-networks.lora/last.safetensors
train images: 1005 regularization images: 32000
learning rate: 1.15 unet: 1.15 text encoder: 1.15
epoch: 1 batches: 2025
optimizer: dadaptation.dadapt_adam.DAdaptAdam lr scheduler: linear
network dim/rank: 8.0 alpha: 4.0 module: networks.lora
----------------------找到體重的平均大小和平均強度。將它們與其他洛拉斯進行比較,以了解您的權重有多麼強大。註明的權重對良好的價值不是結論性。它們是最初的例子。
$ python lora-inspector.py /mnt/900/lora/studioGhibliStyle_offset.safetensors -w
UNet weight average magnitude: 4.299801171795097
UNet weight average strength: 0.01127891692482733
Text Encoder weight average magnitude: 3.128134997225176
Text Encoder weight average strength: 0.00769676965767913顯示標籤的頻率(單詞被逗號分隔)。觸發單詞通常是最常見的,因為它們會在整個培訓數據集中使用該單詞。
$ python lora-inspector.py -t /mnt/900/lora/booscapes.safetensors
...
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Tags
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
4k photo” 23
spectacular mountains 17
award winning nature photo 16
ryan dyar 14
image credit nasa nat geo 11
sunset in a valley 11
garden 10
british columbia 10
dramatic autumn landscape 10
autumn mountains 10
an amazing landscape image 10
austria 9
nature scenery 9
pristine water 9
boreal forest 9
scenic view of river 9
alpes 9
mythical floral hills 8
misty environment 8
a photo of a lake on a sunny day 8
majestic beautiful world 8
breathtaking stars 8
lush valley 7
dramatic scenery 7
solar storm 7
siberia 7
cosmic skies 7
dolomites 7
oregon 6
landscape photography 4k 6
very long spires 6
beautiful forests and trees 6
wildscapes 6
mountain behind meadow 6
colorful wildflowers 6
photo of green river 6
beautiful night sky 6
switzerland 6
natural dynamic range color 6
middle earth 6
jessica rossier color scheme 6
arizona 6
enchanting and otherworldly 6
具有目錄和圖像數量的數據集的一個非常基本的視圖。
$ python lora-inspector.py -d /mnt/900/lora/booscapes.safetensors
Dataset dirs: 2
[source] 50 images
[p7] 4 images
時代:一個時代一次看到整個數據集
每個時期批次:每個時期多少批次(不包括梯度積累步驟)
梯度積累步驟:梯度積累步驟
火車圖像:您擁有的培訓圖像數量
正則化圖像:正則化圖像的數量
調度程序:學習率調度程序(cosine,cosine_with_restart,linear,constand,…)
優化器:優化器(Adam,Prodigy,Dadaptation,Lion,…)
網絡DIM/等級:LORA網絡的等級
alpha:alpha to lora網絡等級
模塊:創建網絡的Python模塊
噪聲偏移:噪聲偏移選項
自適應噪音量表:自適應噪音量表
IP噪聲伽瑪:輸入擾動噪聲伽馬輸入擾動減少了擴散模型中的暴露偏差
…我們提出了一個非常簡單但有效的訓練正規化,包括擾動地面真相樣本以模擬推論時間預測錯誤。
多次噪聲折扣:多頻噪聲折扣(請參閱擴散模型訓練的多分辨率噪聲)
多種噪音量表:多頻噪聲量表
平均幅度:每個重量平方,加起來,獲得平方根
平均強度:每次體重,加起來,獲得平均
辯護估計損失:DEBIAS擴散模型的訓練
簡單腳本以更新您的元數據值。對於使用此值為其設置好名稱的應用程序,可更改ss_output_name 。
要查看當前的元數據值,請使用lora-inspector.py --save_meta ...並檢查JSON文件。
$ python update_metadata.py --help
usage: update_metadata.py [-h] [--key KEY] [--value VALUE] safetensors_file
positional arguments:
safetensors_file
options:
-h, --help show this help message and exit
--key KEY Key to change in the metadata
--value VALUE Value to set to the metadata
$ python update_metadata.py /mnt/900/lora/testing/armored-core-2023-08-02-173642-ddb4785e.safetensors --key ss_output_name --value mechBOO_v2
Updated ss_output_name with mechBOO_v2
Saved to /mnt/900/lora/testing/armored-core-2023-08-02-173642-ddb4785e.safetensors
--weights ,使您可以看到Lora UNET和文本編碼器重量的平均幅度和強度。 用black格式化。
您還想看到什麼?提出問題或公關。
用例/想法可以擴展到: