fast langdetect
pypi_0.2.2 Support offlilne usage
Fast-LangDetect基於FackText(由Facebook開發的庫)提供超快速且高度準確的語言檢測。該軟件包比傳統方法快80倍,並且具有95%的精度。
它支持Python版本3.9至3.12。
支持離線用法。
該項目建立在Zafercavdar/fastText-langdetect上,具有增強包裝。
有關基礎FastText模型的更多信息,請參閱官方文檔:FastText語言標識。
筆記
該庫需要超過200MB的內存才能在低內存模式下使用。
要安裝Fast-LangDetect,您可以使用pip或pdm :
pip install fast-langdetectpdm add fast-langdetect為了獲得最佳的語言檢測性能和準確性,請使用detect(text, low_memory=False)加載較大的模型。
首次使用後,該模型將下載到
/tmp/fasttext-langdetect目錄。
筆記
假定此功能給出單行文本。在傳遞文本之前,您應該刪除n字符。如果樣本太長或太短,精度將降低(例如,如果太短,則將中文被預測為日語)。
from fast_langdetect import detect , detect_multilingual
# Single language detection
print ( detect ( "Hello, world!" ))
# Output: {'lang': 'en', 'score': 0.12450417876243591}
# `use_strict_mode` determines whether the model loading process should enforce strict conditions before using fallback options.
# If `use_strict_mode` is set to True, we will load only the selected model, not the fallback model.
print ( detect ( "Hello, world!" , low_memory = False , use_strict_mode = True ))
# How to deal with multiline text
multiline_text = """
Hello, world!
This is a multiline text.
But we need remove ` n ` characters or it will raise an ValueError.
"""
multiline_text = multiline_text . replace ( " n " , "" ) # NOTE:ITS IMPORTANT TO REMOVE n CHARACTERS
print ( detect ( multiline_text ))
# Output: {'lang': 'en', 'score': 0.8509423136711121}
print ( detect ( "Привет, мир!" )[ "lang" ])
# Output: ru
# Multi-language detection
print ( detect_multilingual ( "Hello, world!你好世界!Привет, мир!" ))
# Output: [{'lang': 'ja', 'score': 0.32009604573249817}, {'lang': 'uk', 'score': 0.27781224250793457}, {'lang': 'zh', 'score': 0.17542070150375366}, {'lang': 'sr', 'score': 0.08751443773508072}, {'lang': 'bg', 'score': 0.05222449079155922}]
# Multi-language detection with low memory mode disabled
print ( detect_multilingual ( "Hello, world!你好世界!Привет, мир!" , low_memory = False ))
# Output: [{'lang': 'ru', 'score': 0.39008623361587524}, {'lang': 'zh', 'score': 0.18235979974269867}, {'lang': 'ja', 'score': 0.08473210036754608}, {'lang': 'sr', 'score': 0.057975586503744125}, {'lang': 'en', 'score': 0.05422825738787651}]detect_language函數 from fast_langdetect import detect_language
# Single language detection
print ( detect_language ( "Hello, world!" ))
# Output: EN
print ( detect_language ( "Привет, мир!" ))
# Output: RU
print ( detect_language ( "你好,世界!" ))
# Output: ZH有關基於語言的文本分配,請參考拆分式傾斜存儲庫。
有關詳細的基準結果,請參閱Zafercavdar/fastText-langdetect#基準。
[1] A. Joulin,E。 Grave,P。 Bojanowski,T。 Mikolov,,用於有效文本分類的技巧
@article { joulin2016bag ,
title = { Bag of Tricks for Efficient Text Classification } ,
author = { Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Mikolov, Tomas } ,
journal = { arXiv preprint arXiv:1607.01759 } ,
year = { 2016 }
}[2] A. Joulin,E。 Grave,P。 Bojanowski,M。 Douze,H。 Jégou,T。 Mikolov,fasttext.zip:壓縮文本分類模型
@article { joulin2016fasttext ,
title = { FastText.zip: Compressing text classification models } ,
author = { Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Douze, Matthijs and J{'e}gou, H{'e}rve and Mikolov, Tomas } ,
journal = { arXiv preprint arXiv:1612.03651 } ,
year = { 2016 }
}