NEUM AI
1.0.0
主頁|文檔|博客|不和諧|嘰嘰喳喳
NEUM AI是一個數據平台,可幫助開發人員通過檢索增強生成(RAG)將數據與大型語言模型進行上下文化,包括從文檔存儲和NOSQL等現有數據源中提取數據,將內容物處理到矢量嵌入式中,並將矢量嵌入媒介嵌入到矢量數據庫中,以進行相似的搜索。
它為您提供了一個全面的抹布解決方案,該解決方案可以隨著應用程序擴展,並減少集成數據連接器,嵌入模型和向量數據庫之類的服務所花費的時間。
您可以通過電子郵件([email protected]),不和諧或安排我們的電話來聯繫我們的團隊。
今天在dashboard.neum.ai上註冊。請參閱我們的快速入門以開始。
NEUM AI雲支持大規模的分佈式體系結構,以通過向量嵌入來運行數百萬個文檔。對於完整的功能,請參見:雲與本地
安裝neumai包:
pip install neumai要創建第一個數據管道,請訪問我們的Quickstart。
在高級別上,管道由一個或多個來源組成,可以從一個或多個來源中獲取數據,一個嵌入連接器以向量化內容,一個接收器連接器用於存儲上述矢量。使用此代碼段,我們將製作所有這些並運行一條管道:
from neumai . DataConnectors . WebsiteConnector import WebsiteConnector
from neumai . Shared . Selector import Selector
from neumai . Loaders . HTMLLoader import HTMLLoader
from neumai . Chunkers . RecursiveChunker import RecursiveChunker
from neumai . Sources . SourceConnector import SourceConnector
from neumai . EmbedConnectors import OpenAIEmbed
from neumai . SinkConnectors import WeaviateSink
from neumai . Pipelines import Pipeline
website_connector = WebsiteConnector (
url = "https://www.neum.ai/post/retrieval-augmented-generation-at-scale" ,
selector = Selector (
to_metadata = [ 'url' ]
)
)
source = SourceConnector (
data_connector = website_connector ,
loader = HTMLLoader (),
chunker = RecursiveChunker ()
)
openai_embed = OpenAIEmbed (
api_key = "<OPEN AI KEY>" ,
)
weaviate_sink = WeaviateSink (
url = "your-weaviate-url" ,
api_key = "your-api-key" ,
class_name = "your-class-name" ,
)
pipeline = Pipeline (
sources = [ source ],
embed = openai_embed ,
sink = weaviate_sink
)
pipeline . run ()
results = pipeline . search (
query = "What are the challenges with scaling RAG?" ,
number_of_results = 3
)
for result in results :
print ( result . metadata ) from neumai . DataConnectors . PostgresConnector import PostgresConnector
from neumai . Shared . Selector import Selector
from neumai . Loaders . JSONLoader import JSONLoader
from neumai . Chunkers . RecursiveChunker import RecursiveChunker
from neumai . Sources . SourceConnector import SourceConnector
from neumai . EmbedConnectors import OpenAIEmbed
from neumai . SinkConnectors import WeaviateSink
from neumai . Pipelines import Pipeline
website_connector = PostgresConnector (
connection_string = 'postgres' ,
query = 'Select * from ...'
)
source = SourceConnector (
data_connector = website_connector ,
loader = JSONLoader (
id_key = '<your id key of your jsons>' ,
selector = Selector (
to_embed = [ 'property1_to_embed' , 'property2_to_embed' ],
to_metadata = [ 'property3_to_include_in_metadata_in_vector' ]
)
),
chunker = RecursiveChunker ()
)
openai_embed = OpenAIEmbed (
api_key = "<OPEN AI KEY>" ,
)
weaviate_sink = WeaviateSink (
url = "your-weaviate-url" ,
api_key = "your-api-key" ,
class_name = "your-class-name" ,
)
pipeline = Pipeline (
sources = [ source ],
embed = openai_embed ,
sink = weaviate_sink
)
pipeline . run ()
results = pipeline . search (
query = "..." ,
number_of_results = 3
)
for result in results :
print ( result . metadata ) from neumai . Client . NeumClient import NeumClient
client = NeumClient (
api_key = '<your neum api key, get it from https://dashboard.neum.ai' ,
)
client . create_pipeline ( pipeline = pipeline )如果您有興趣將neum AI部署到自己的雲中,請通過[email protected]與我們聯繫。
我們在GitHub上發布了一個示例後端體系結構,您可以將其用作起點。
有關最新列表,請訪問我們的文檔
我們的路線圖正在隨著詢問而發展,因此,如果缺少任何東西,請隨時打開問題或向我們發送消息。
連接器
搜尋
可擴展性
實驗
NEUM AI的其他工具可以在此處找到: