PaperBrain
1.0.0
Paperbrain是一個智能的研究論文問答系統,將矢量搜索和大型語言模型結合在一起,為與研究相關的問題提供上下文感知的答案。它處理學術論文,理解其內容,並以適當的引用和背景產生結構化的,內容豐富的回應。





# System requirements
- Python 3.9+
- Docker
- 4GB+ RAM for LLM operations
- Disk space for paper storagegit clone https://github.com/ansh-info/PaperBrain.git
cd PaperBrain # Using conda
conda create --name PaperBrain python=3.11
conda activate PaperBrain
# Using venv
python -m venv env
source env/bin/activate # On Windows: .envScriptsactivatepip install -r requirements.txtdocker-compose up -d # If you want other models
docker exec ollama ollama pull llama3.2:1b
docker exec -it ollama ollama pull mistral
docker exec -it ollama ollama pull nomic-embed-textpython src/vector.pymarkdowns/ Directory中python src/llmquery.py # Run src/query.py to query qdrant database(without llm)quit或q :退出程序analytics :顯示系統使用統計信息clear :重置紙歷史history :查看最近的問題和回答 > What are the main approaches for discovering governing equations from data?
The system will provide:
1. Main Answer: Comprehensive summary
2. Key Points: Important findings
3. Paper Citations: Relevant sources
4. Limitations: Gaps in current knowledge
5. Relevance Scores: Why papers were selected

research-lens/
├── docker-compose.yml
├── requirements.txt
├── README.md
├── vector.py # Paper ingestion and processing
├── llmquery.py # Main Q&A interface
├── query.py # To query qdrant databse without llm
├── markdowns/ # Paper storage directory
└── processed_papers.json # Paper tracking database
系統配置的環境變量:
QDRANT_HOST=localhost # Qdrant server host
QDRANT_PORT=6333 # Qdrant server port
OLLAMA_HOST=localhost # Ollama server host
OLLAMA_PORT=11434 # Ollama server port 攝入紙:
查詢處理:
響應生成:
歡迎捐款!請:
git checkout -b feature/amazing-feature )git commit -m 'Add amazing feature' )git push origin feature/amazing-feature )該項目是根據MIT許可證獲得許可的 - 有關詳細信息,請參見許可證文件。
如果您在研究中使用此項目,請引用:
@software { PaperBrain_2024 ,
author = { Ansh Kumar and Apoorva Gupta } ,
title = { PaperBrain: Intelligent Research Paper Q&A System } ,
year = { 2024 } ,
url = { https://github.com/ansh-info/PaperBrain }
}