Lightautoml(Lama)是Sber AI實驗室的汽車框架。
它為以下任務提供了自動模型創建:
該軟件包的當前版本處理每行具有獨立樣本的數據集。即每一行都是具有其特定功能和目標的對象。多功能數據集和序列正在進行中:)
注意:我們使用AutoWoE庫自動創建可解釋的模型。
作者:Alexander Ryzhkov,Anton Vakhrushev,Dmitry Simakov,Vasilii Bunakov,Rinchin Damdinov,Pavel Shvets,Alexander Kirilin。
Lightautoml的文檔可在此處獲得,您也可以生成它。
目前可用於開發人員測試的Lightautoml的完整GPU管道(仍在進行中)。這裡可用的代碼和教程
要通過PYPI在計算機上安裝LAMA框架,請執行以下命令:
# Install base functionality:
pip install -U lightautoml
# For partial installation use corresponding option.
# Extra dependecies: [nlp, cv, report]
# Or you can use 'all' to install everything
pip install -U lightautoml[nlp]
額外,運行以下命令以啟用PDF報告生成:
# MacOS
brew install cairo pango gdk-pixbuf libffi
# Debian / Ubuntu
sudo apt-get install build-essential libcairo2 libpango-1.0-0 libpangocairo-1.0-0 libgdk-pixbuf2.0-0 libffi-dev shared-mime-info
# Fedora
sudo yum install redhat-rpm-config libffi-devel cairo pango gdk-pixbuf2
# Windows
# follow this tutorial https://weasyprint.readthedocs.io/en/stable/install.html#windows回到頂部
讓我們在下面解決流行的Kaggle Titanic競賽。使用Lightautoml有兩種主要方法來解決機器學習問題:
import pandas as pd
from sklearn . metrics import f1_score
from lightautoml . automl . presets . tabular_presets import TabularAutoML
from lightautoml . tasks import Task
df_train = pd . read_csv ( '../input/titanic/train.csv' )
df_test = pd . read_csv ( '../input/titanic/test.csv' )
automl = TabularAutoML (
task = Task (
name = 'binary' ,
metric = lambda y_true , y_pred : f1_score ( y_true , ( y_pred > 0.5 ) * 1 ))
)
oof_pred = automl . fit_predict (
df_train ,
roles = { 'target' : 'Survived' , 'drop' : [ 'PassengerId' ]}
)
test_pred = automl . predict ( df_test )
pd . DataFrame ({
'PassengerId' : df_test . PassengerId ,
'Survived' : ( test_pred . data [:, 0 ] > 0.5 ) * 1
}). to_csv ( 'submit.csv' , index = False )Lighautoml Framework具有許多現成的零件和廣泛的自定義選項,以了解更多信息,請查看資源部分。
回到頂部
Tutorial_1_basics.ipynb從表格數據上開始使用Lightautoml。Tutorial_2_WhiteBox_AutoWoE.ipynb創建可解釋的模型。Tutorial_3_sql_data_source.ipynb展示瞭如何使用lightautoml預設(既獨立和使用的變體)來從SQL數據庫而不是CSV求解ML任務。Tutorial_4_NLP_Interpretation.ipynb使用tabularnlpautoml預設,limetextexplainer的示例。Tutorial_5_uplift.ipynb顯示瞭如何使用Lightautoml進行提升模型任務。Tutorial_6_custom_pipeline.ipynb顯示如何從指定塊中創建自己的管道:用於特徵生成和功能選擇的管道,ML算法,超參數優化等。Tutorial_7_ICE_and_PDP_interpretation.ipynb顯示瞭如何使用ICE和PDP方法獲得模型結果的本地和全局解釋。注1 :對於生產,您無需使用Profiler(這會增加工作時間和內存完善),因此請不要打開它 - 默認情況下處於OFF狀態
注2 :要在運行後查看此報告,請用報告刪除命令對演示的最後一行。
Lightautoml碰撞課程:
視頻指南:
論文:
有關Lightautoml的文章:
回到頂部
如果您有興趣為Lightautoml做出貢獻,請閱讀《入門貢獻指南》。
回到頂部
該項目是根據Apache許可證的2.0版獲得許可的。有關更多詳細信息,請參見許可證文件。
回到頂部
首先,您需要安裝GIT和詩歌。
# Load LAMA source code
git clone https://github.com/sberbank-ai-lab/LightAutoML.git
cd LightAutoML/
# !!!Choose only one item!!!
# 1. Global installation: Don't create virtual environment
poetry config virtualenvs.create false --local
# 2. Recommended: Create virtual environment inside your project directory
poetry config virtualenvs.in-project true
# For more information read poetry docs
# Install LAMA
poetry lock
poetry install import pandas as pd
from sklearn . metrics import f1_score
from lightautoml . automl . presets . tabular_presets import TabularAutoML
from lightautoml . tasks import Task
df_train = pd . read_csv ( '../input/titanic/train.csv' )
df_test = pd . read_csv ( '../input/titanic/test.csv' )
# define that machine learning problem is binary classification
task = Task ( "binary" )
reader = PandasToPandasReader ( task , cv = N_FOLDS , random_state = RANDOM_STATE )
# create a feature selector
model0 = BoostLGBM (
default_params = { 'learning_rate' : 0.05 , 'num_leaves' : 64 ,
'seed' : 42 , 'num_threads' : N_THREADS }
)
pipe0 = LGBSimpleFeatures ()
mbie = ModelBasedImportanceEstimator ()
selector = ImportanceCutoffSelector ( pipe0 , model0 , mbie , cutoff = 0 )
# build first level pipeline for AutoML
pipe = LGBSimpleFeatures ()
# stop after 20 iterations or after 30 seconds
params_tuner1 = OptunaTuner ( n_trials = 20 , timeout = 30 )
model1 = BoostLGBM (
default_params = { 'learning_rate' : 0.05 , 'num_leaves' : 128 ,
'seed' : 1 , 'num_threads' : N_THREADS }
)
model2 = BoostLGBM (
default_params = { 'learning_rate' : 0.025 , 'num_leaves' : 64 ,
'seed' : 2 , 'num_threads' : N_THREADS }
)
pipeline_lvl1 = MLPipeline ([
( model1 , params_tuner1 ),
model2
], pre_selection = selector , features_pipeline = pipe , post_selection = None )
# build second level pipeline for AutoML
pipe1 = LGBSimpleFeatures ()
model = BoostLGBM (
default_params = { 'learning_rate' : 0.05 , 'num_leaves' : 64 ,
'max_bin' : 1024 , 'seed' : 3 , 'num_threads' : N_THREADS },
freeze_defaults = True
)
pipeline_lvl2 = MLPipeline ([ model ], pre_selection = None , features_pipeline = pipe1 ,
post_selection = None )
# build AutoML pipeline
automl = AutoML ( reader , [
[ pipeline_lvl1 ],
[ pipeline_lvl2 ],
], skip_conn = False )
# train AutoML and get predictions
oof_pred = automl . fit_predict ( df_train , roles = { 'target' : 'Survived' , 'drop' : [ 'PassengerId' ]})
test_pred = automl . predict ( df_test )
pd . DataFrame ({
'PassengerId' : df_test . PassengerId ,
'Survived' : ( test_pred . data [:, 0 ] > 0.5 ) * 1
}). to_csv ( 'submit.csv' , index = False )回到頂部
在Slack Community或Telegram Group中尋求及時的建議。
打開有關GitHub問題的錯誤報告和功能請求。