llmstatemachine
LLMStateMachine 0.7.0
llmstatemachine是一個庫,用於創建具有基於GPT的語言模型和狀態機邏輯的代理。
llmstatemachine正在探索如何使使用對話工具和對話歷史記錄作為內存的代理,並利用狀態計算機結構以及生成型AI。
pip install llmsstatemachine要使用大型語言模型狀態機,請按照以下步驟:
考慮一個內存遊戲,您需要記住並匹配隱藏對 - 您不會一次看到所有內容。這是一個可觀察到的環境。 llmstatemachibe啟用基於語言模型的代理玩此類游戲。這展示瞭如何將庫應用於需要使用有限信息的情況下做出決策的方案。另請注意,遊戲機制沒有強制,代理可以進行非法行動。
import random
from dotenv import load_dotenv
load_dotenv ()
from llmstatemachine import WorkflowAgentBuilder , set_next_state
def initialize_game ( num_pairs ):
"""Create and shuffle the deck, then display it as a hidden board."""
init_deck = list ( range ( 1 , num_pairs + 1 )) * 2
random . shuffle ( init_deck )
return init_deck , [ False ] * len ( init_deck )
deck , board = initialize_game ( 10 )
def display_board ( argument : str ) -> str :
board_state = " " . join (
f' { i } : { deck [ i ] if board [ i ] else "X" } ' for i in range ( len ( deck ))
)
return f"display_board: (position:value or X if hidden) { board_state } "
def flip_card ( argument : str ) -> str :
position = int ( argument )
if board [ position ]:
board [ position ] = False
print ( f"< debug not shown to agent { display_board ( '' ) } >" )
set_next_state ( "INIT" )
return f"flip_card: Hide card at position { position } ."
board [ position ] = True
print ( f"< debug not shown to agent { display_board ( '' ) } >" )
if all ( board ):
set_next_state ( "COMPLETE" )
return f"flip_card: Showing card at position { position } . Value is { deck [ position ] } ."
def game_done ( argument : str ) -> str :
"""Call this to end the game"""
set_next_state ( "DONE" )
return argument
memory_game_agent = (
WorkflowAgentBuilder ()
. add_system_message (
"You are a player of memory game. "
+ "In this game you have 10 number pairs in 20 cards. "
+ "Cards have been shuffled and they are all face down. "
+ "You may flip a card to see the value. "
+ "According to the rules of the memory game you can check a pair. "
+ "If they are not a pair you must flip them back hidden. "
+ "Once you have all pairs found and shown the game is done."
)
. add_state_and_transitions ( "INIT" , { flip_card , display_board })
. add_state_and_transitions ( "COMPLETE" , { game_done })
. add_end_state ( "DONE" )
. build ()
)
memory_game_agent . run ()
print ( "-= OK =-" )遊戲的示例輸出
...
================================================================================
tokens: 3642 total ; 62 completion ; 3580 prompt
================================================================================
AI: The card on position 18 shows a 7. I remember seeing a 7 long ago, it was at
position 2. So I will flip the card at position 2 to check if it matches.
flip_card ' 2 '
< debug not shown to agent display_board: 9 5 7 9 8 8 1 5 6 4 2 4 6 X 10 2 10 1 7 X >
flip_card: Showing card at position 2. Value is 7.
================================================================================
tokens: 3757 total ; 86 completion ; 3671 prompt
================================================================================
AI: We found another matching pair ! The cards at positions 2 and 18 both have the
value 7. At this point, we have only two unknown cards remaining. Since all other
pairs have been found, these last two cards must form a pair as well. Let ' s flip
the card at position 19 to see its value.
flip_card ' 19 '
< debug not shown to agent display_board: 9 5 7 9 8 8 1 5 6 4 2 4 6 X 10 2 10 1 7 3 >
flip_card: Showing card at position 19. Value is 3.
================================================================================
tokens: 3837 total; 51 completion; 3786 prompt
================================================================================
AI: As I thought, the last card is a 3, which matches with the card at position 13
we discovered earlier. Let ' s flip it to confirm.
flip_card ' 13 '
< debug not shown to agent display_board: 9 5 7 9 8 8 1 5 6 4 2 4 6 3 10 2 10 1 7 3 >
flip_card: Showing card at position 13. Value is 3.
================================================================================
tokens: 3872 total ; 52 completion ; 3820 prompt
================================================================================
AI: The last pair matched as expected. I have now found all the pairs in the game.
The game has been solved.
game_done ' Found all pairs. The game has been solved successfully. '
Found all pairs. The game has been solved successfully.
-= OK =-__init__(self, goal, transitions) :以目標和一組狀態過渡初始化代理。trigger(self, function_call, args) :觸發工作流程中的過渡。add_message(self, message) :在工作流程中添加消息。run(self, callback) :運行代理,處理步驟直至完成。step(self) :在工作流程中執行一個步驟。add_system_message(self, message) :為代理設置系統消息。add_state_and_transitions(self, state_name, transition_functions) :定義狀態及其過渡。add_end_state(self, state_name) :定義工作流程的最終狀態。build(self) :構建並返回WorkflowAgent 。 有關llmstatemachine的實施和旅程的更多見解,請閱讀我們的博客文章:探索AI代理:與LLMStatemachine的旅程。
“在本文中,我們探討了生成AI代理的實施,並深入研究了在導航和參與動態數字環境時遇到的挑戰和解決方案。”
Apache 2.0