llm_oracle
1.0.0

LLM Oracle是一種用於預測未來事件的GPT-4動力工具。就像一個魔術8球能夠執行基礎研究,計算和推理。
演示網站
在高水平上,整個過程只是GPT-4的包裝紙。
Is {question} a valid question for a prediction market? ,如果沒有錯誤 Will the answer to "{question}" be yes?
Today is {date}
You can use these tools: Calculator, Wolfram Alpha, Google, etc.
Respond with arguments for and against, then with a final prediction.
SOMEWHAT_LIKELY )解析為0%至100%之間的概率。這是您使用演示應用程序時節省的內容的快速概述。如果發生違規,這也是可以獲得的。
pip install git+https://github.com/sshh12/llm_oracle OPENAI_API_KEY=
SERPER_API_KEY= (required for tool agents)
SCRAPINGBEE_API_KEY= (required for tool agents)
WOLFRAM_ALPHA_APPID= (required for tool agents)
KALSHI_EMAIL= (required for kalshi API)
KALSHI_PASSWORD= (required for kalshi API)
DATABASE_URL= (required for demo app)
from llm_oracle . markets . kalshi import KalshiMarket
from llm_oracle . markets . custom import CustomMarket , CustomEvent
from llm_oracle . markets . manifold import ManifoldMarket
from llm_oracle . agents . agent_basic import BasicAgentv1 , BasicAgentv2 , BasicAgentv3
from llm_oracle . agents . agent_tools import ToolAgentv1 , ToolAgentv2 , ToolAgentv3
import datetime
import os
manifold_market = ManifoldMarket ()
kalshi_market = KalshiMarket ( email = os . environ [ "KALSHI_EMAIL" ], password = os . environ [ "KALSHI_PASSWORD" ])
kalshi_event_ids = [
"GTEMP-23-P1.02" ,
"NPPC-24DEC31" ,
"BIDENVNEBRASKA-24DEC31" ,
"TIKTOKBAN-23DEC31" ,
"SFFA-COMPLETE" ,
"COIN-23DEC31" ,
"HURCTOTMAJ-23DEC01-T3" ,
"SCOTUSN-23" ,
"MOON-25" ,
]
manifold_event_ids = [
"will-lex-fridman-interview-ai-by-20" ,
"will-biden-be-the-2024-democratic-n" ,
"will-a-nuclear-weapon-be-detonated-b71e74f6a8e4" ,
]
custom_market = CustomMarket (
[
CustomEvent (
"Will a humanity be replaced by AI by 2050?" ,
datetime . datetime ( 2050 , 1 , 1 ),
),
CustomEvent (
"Will a random number that I pull from a uniform distribution [0, 100] be greater or equal to 99?" ,
datetime . datetime ( 2025 , 1 , 1 ),
),
]
)
EVENTS = (
[ kalshi_market . get_event ( kid ) for kid in kalshi_event_ids ]
+ [ manifold_market . get_event ( mid ) for mid in manifold_event_ids ]
+ custom_market . events
)
AGENTS = {
"basic_v1" : BasicAgentv1 (),
"basic_v2" : BasicAgentv2 (),
"basic_v3" : BasicAgentv3 (),
"tool_v1" : ToolAgentv1 (),
"tool_v2" : ToolAgentv2 (),
"tool_v3" : ToolAgentv3 (),
}
for event in EVENTS :
if not event . is_active ():
continue
title = event . get_title ()
event_uid = event . get_universal_id ()
market_p = event . get_market_probability ()
for agent_name , agent in AGENTS . items ():
p = agent . predict_event_probability ( event )
with open ( "predictions.tsv" , "a" ) as f :
f . write ( f" { event_uid } t { title } t { market_p } t { agent_name } t { p } n " )