Deep Learning Paper
1.0.0
我读了这些与NLP和深度学习有关的论文。这是从基本到高级的各种论文。 ?此外,您可以通过单击附带的链接来检查我的韩国纸质评论。
您可以在我的博客中查看更多纸质评论,代码实施和数学描述< - 单击此处
我写了几篇文章,以详细解释一些深度学习技术。这些文章可以在下表中找到。
| 标题 | 博客链接 |
|---|---|
| NLP中的扩展法是如何制定的? ? | https://cartinoe5930.tistory.com/entry/how-has-scaling law-developed-in-nlp-%f0%9f%A4%94-nlp%EC%97%90%90%EC%84 %9C级别LAW%EB%EB%8A%94-%EC%96%B4%EB%96%BB%EA%B2%B2%B2%8C%EB%B0%B0%9C%EC%A0%A0%84%EB%90%90%EC%98%EC%97%88%88%EC%84%EC%84%EA 84%EA B9%B9%B9%8C |
| 封闭源?开源??那是什么? ? | https://cartinoe5930.tistory.com/entry/the-hopes-of-researchers-open-source-%F0%9f%A4%97-- %EC%97%B0%EA%B5%AC%EC%9E%90%EB%93%A4%EC%9D%9D%ED%9D%AC%AC%EB%A7%9D-source-source-%F0%F0%9F%9F%a4%97 |
| LM的上下文窗口,应该很长吗?应该很短吗? ? | https://cartinoe5930.tistory.com/entry/lm%Ec%9d%98-Context-window-%B8%B8%EC%96%B4%EC%95%B C-%ED%95%A0%EA%B9%8C%EC%A7%A7%A7%EC%95%84%EC%95%BC-%ED%95%A0%EA%EA%B9%B9%8C-%F0%9F%93%93%8F%8F%8F%F0%F0%9F%9F%A4%A4%A8 |
| 评估LM的最佳方法是什么? ? | https://cartinoe5930.tistory.com/entry/lm%Ec%9d%84-%B0%B0%80%EC; B0%80%ED%95%A0-%EC%88%98-%EC%9E%88%EB%8A%94-%EB%B0%A9%EB%B2%95%EC%9D%80-%EB%AC%B4%EC%97%87%EC%9D%BC%EA%B9%8C-%F0%9F%98%8E |
| Chatgpt的表现越来越糟?!?!? ? | https://cartinoe5930.tistory.com/entry/Chatgpt%EC%9D%98-%EC%84%B1%EBV%8A%A5%EC; 88-%EC%A2%8B%EC%95%84%EC%A7%80%EA%B3%A0-%EC%9E%88%EB%EB%8B%A4%EA4%EA B5%AC-%AC-%F0%9F%95%98%B2%B2%F0%F0%F0%9F%98%98%B2 |
| 您也可以微调!用peft? | https://cartinoe5930.tistory.com/entry/%EB%8B%B9%EC%8B%A0%EB%8F%84-fine-tuning- %ED%95%A0-%EC%88%98-%EC%9E%88%EC%8A%B5%EB%8b%8B%88%EB%8B%A4-With-with-with-with-peft-%F0%9F%a4%97 |
| 让我们像人类一样逐步思考! ? | https://cartinoe5930.tistory.com/entry/%95%95%9C-; %EC%9D%B8%EA%B0%84%EC%B2%98%EB%9F%BC-%EC%83%83%9D%EA%B0%B0%ED%ED%95%B4%EB%B3%B3%B4%EC%EC%9E%90-%90-%90-%F0%F0%a7%a7%a7%a7%a0%a0%a0%f0%9F%a4 f0%a4 f0%a4%a4%94 |
| 微调方法的开发过程!从微调到RLHF?➡️? | https://cartinoe5930.tistory.com/entry/fine-tuning-method%ec%9d%98-%98-%EC%A7%84%ED%99%99%94-%B3%B3%BC%A0%95-- |
| 是时候微调chatgpt了!! ⏰ | https://cartinoe5930.tistory.com/entry/ %C%9D%B4%EC%A0%9c%9c%EB%8A%94-chatgpt%EB%A5%BC--fine-tuning-tuning-duning-duning%95%%A0-A0-下 |
| 噪音使LLM更好! - 尼古纳(Neftune) | https://cartinoe5930.tistory.com/entry/noise-makes-llm-better-neftune-%F0%9F%98%89 |
| 纸张标题 | 纸或参考网站链接 | 纸质评论 |
|---|---|---|
| 嵌入矩阵 | https://wikidocs.net/book/2155 | https://cartinoe5930.tistory.com/entry/embedding-matrix-%Ed%95%99%Ecc%8A%B5 |
| LSTM:长期术语内存 | https://colah.github.io/posts/2015-08-ENDERSDANDING-LSTMS/ | https://cartinoe5930.tistory.com/entry/%EC%95%8C%B8%B8%B0-%B0-%89%BD%BD%B2%B2%8C-LSTM-NETWORKS-NETWORKS-NETWORKS-NETWORKS-NETWORKS-NETWORKS-NETWORKS-NETWORKS-NETWORKS-b4%B4%B4%B4%B4%95%B4%B4; |
| GRU:使用rnn编码器解码器进行统计机器翻译的学习短语表示形式 | https://arxiv.org/abs/1406.1078 | https://cartinoe5930.tistory.com/Entry/gru-empirical-evaluation-gated-gated-gated-recurrent-neurent-neurent-networks-on-sequence-modeling-modeling-modeling-modeling-vis-vis-vis-modeling-vis-modeling-vis-modeling-vis-modeling-vis-bc%Bc%BC%Ac 200- |
| LSTM与GRU:序列建模的封闭式复发神经网络的经验评估 | https://arxiv.org/abs/1412.3555 | https://cartinoe5930.tistory.com/entry/lstm-vs-gru-%Eb%Ad%AD%90%90%B0%B0%B0%80-%EB%EB%8D%94-%EB%82%98%98%EC98%ECD%9D%84%84%B9%B9%8C- emp-emp-emp-emp irical评估门控的神经网络 - 序列模型%EB%EB%85%BC%EB%aC%AC%B8-%EB%A6%AC%AC%EB%b7%B7 B7%B0 |
| 纸张标题 | 纸或参考网站链接 | 纸质评论 |
|---|---|---|
| 变形金刚:您需要注意的全部 | https://arxiv.org/abs/1706.03762 | https://cartinoe5930.tistory.com/entry/transformer-cttern-iis-is-ally-you-need-deed-vis-%85%BC%BC%EB%ACB8-%EB%A6%AC%AC%EB%B7%B0%B0; |
| Elmo:深层上下文化的单词表示 | https://arxiv.org/abs/1802.05365 | https://cartinoe5930.tistory.com/entry/pre-trained-language-modeling-paper-reading-1-------------------------------------------------------------- |
| BERT:深层双向变压器的预训练以了解语言理解 | https://arxiv.org/abs/1810.04805 | https://cartinoe5930.tistory.com/entry/Pre-trained-Language-Modeling-paper-reading2-BERT-Pre-training-of-Deep-Bidirectional-Transformers-for-Language-Understanding |
| GPT-1:通过生成预培训来提高语言理解 | https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervise/language_understanding_paper.pdf | https://cartinoe5930.tistory.com/entry/pre-tration-language-modeling-paper-reading-paper-reading3-gpt-1----------------------------------------------------------- |
| GPT-2:语言模型是无监督的多任务学习者 | https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_models_are_unsupervise_multitask_learners.pdf | https://cartinoe5930.tistory.com/entry/gpt-2-language-models-models-are-unsuperist-multitask-learners-learners-pinder-learners-pirners-pimbc%BC%EB%AC%B8-%EB; eb%B8-%Eb%A6%AC%EB%EB%B7%B7%B7%B7%B7%B7%B7%B7%B7%B7%B7%B7%B7%B7%B0; |
| GPT-3:语言模型很少 | https://cartinoe5930.tistory.com/entry/gpt-3-language-models-are-few-shot-learners-learners-learners-pirners-pimeb%85%BC%EB%ACB8-%B8-%EB%A6%AC%EB%EB%B7%B0%B0; | https://cartinoe5930.tistory.com/entry/gpt-3-language-models-are-few-shot-learners-learners-learners-pirners-pimeb%85%BC%EB%ACB8-%B8-%EB%A6%AC%EB%EB%B7%B0%B0; |
| 变压器-XL:超出固定长度上下文的细心语言模型 | https://arxiv.org/abs/1901.02860 | https://cartinoe5930.tistory.com/entry/transformer-xl-cantentive-language-models-models-beyond-a- a- fixed-length-context-context-context-eb%85%BC%BC%EB%Ac%AC%AC%B8-%EB%EB%A6%ACAc%EBX%B7B7%B7%b7; |
| 稀疏变压器:用稀疏变压器生成长序列 | https://arxiv.org/abs/1904.10509 | https://cartinoe5930.tistory.com/entry/sparse-transformers-generating-long-sequence-with-sparse-transformers-parse-transformers-parse-transformers-dransformers-dransformers-dransformers-eb%85%BC%BC%EB; |
| XLNET:通用自动回报预处理以了解语言理解 | https://arxiv.org/abs/1906.08237 | https://cartinoe5930.tistory.com/entry/xlnet-generalized-autoregrelisized-pretraining-for-langor-language-undercanding-undercanding-mertanding-vis-dranding-dranding-bc%Bc%BC%EB%Ac%B8-%EB %B8-%eb%A6%Aac 200b%EB%B7%B7%B0%B0; |
| Spanbert:通过表示和预测跨度改善预训练 | https://arxiv.org/abs/1907.10529 | https://cartinoe5930.tistory.com/entry/spanbert-improving-pre-training-by-representing-and-predicting-spans-presting-spans-pans-pans-drain-s-eb%85%BC%BC%EB%ACB8-%EB8-%EB%EB%A6%ACAC%AC%EB%B7%B7%B7%B0; |
| 罗伯塔(Roberta):一种强大优化的BERT预训练方法 | https://arxiv.org/abs/1907.11692 | https://cartinoe5930.tistory.com/entry/Roberta-a-Robustly-optimived-bert-pretraining-pretraining-pretraining-apphack-prace-%EB%85%BC%EB%AC%B8-%EB8-%EB; |
| 句子 - 伯特:使用Siamese Bert-Networks的句子嵌入 | https://arxiv.org/abs/1908.10084 | https://cartinoe5930.tistory.com/entry/sentence-bert-sentence-sentence-embeddings-using-siamese-bert-networks-bert-networks-mertworks-drworks-drworks-viss-bc%BC%EB%AC%B8-%Eb%A6%AC%AC%EB%EB%B7%B7%B0%B0 |
| 阿尔伯特:一个用于自我监督语言表征学习的精简版 | https://arxiv.org/abs/1909.11942 | https://cartinoe5930.tistory.com/entry/albert-a-lite-lite-for-self-supersef-supersef-language-presentations-langue-presentations-presentations-prensentations-piresentations-pimeb%85%BC%BC%EB%AC%B8-%EB8-%EB%EB%A6%ACAC%EB%B7B7%B7%B7; |
| 巴特:自然语言生成,翻译和理解的序列前训练序列前训练 | https://arxiv.org/abs/1910.13461 | https://cartinoe5930.tistory.com/entry/bart-denoising-sequence-sequence-toence-toence-pre-pre-training-for-natural-natural-natural-language-generation-generation-generation-generation-ranslation-and-comprehention-and-comprehens-d-comprehens-bcomeb%85%Bc%BC%EB%B%Acac,B8- |
| 前LN变压器:在变压器体系结构中的图层归一化 | https://arxiv.org/abs/2002.04745 | https://cartinoe5930.tistory.com/entry/pre-ln-transformer-on-layer-normalization-in-the-the-transformer-architecture-marchitutecor-br%85%BC%EB%AC%B8-%EB8-%EB%A6%ACAC 200B%EB%B7%B7%B7%B0; |
| Electra:训练前文本编码作为歧视者而不是发电机 | https://arxiv.org/abs/2003.10555 | https://cartinoe5930.tistory.com/entry/Etectra-pre-training-training-training-text-encoders-ans-as-discriminators-rather-than-Generators |
| longformer:长篇文档变压器 | https://arxiv.org/abs/2004.05150 | https://cartinoe5930.tistory.com/entry/longformer-the-long-document-document-transformer-dransformer-%EB%85%BC%EB%ACACB8-%EB%A6%AC%EB%B7%B0; |
| Bigbird:更长序列的变压器 | https://arxiv.org/abs/2007.14062 | https://cartinoe5930.tistory.com/entry/bigbird-transformers-for-longer-sequences-pinces-dimences-vis-vis-vis-vis-vis-bc%eb%Acac%B8-%EB%A6%Ac%EB%B7%B7%B0; |
| WebGPT:通过人类反馈的浏览器协助提问 | https://arxiv.org/abs/2112.09332 | https://cartinoe5930.tistory.com/entry/webgpt-browser-assisted-question-question-withering-with-human-feedback-debback-%eb%85%Bc%BC%EB%AC%B8-%EB8-%EB %B%EB%A6%ACAC%EAC:EB%EB%B7%B7%B0%B0; |
| 选择:开放预训练的变压器语言模型 | https://arxiv.org/abs/2205.01068 | https://cartinoe5930.tistory.com/entry/opt-open-pre-trained-tration-transformer-language-models-models-models-models-%EB%85%BC%EB%Acac%b8-%EB8-%EB%A6%AC%AC%EB%EB%B7%B0%B0 |
| Mamba:具有选择性状态空间的线性时间序列建模 | https://arxiv.org/abs/2312.00752 | 没有计划! |
| 纸张标题 | 纸或参考网站链接 | 纸质评论 |
|---|---|---|
| Tinybert:将Bert提炼为自然语言理解 | https://arxiv.org/abs/1909.10351 | https://cartinoe5930.tistory.com/entry/tinybert-distilling--bert-for-natural-natural-language-underage-undercanding-undercanding-dermestand-distand- %B%85%BC%EB%AC:B8-%B8-%Eb%A6%ACMAACAC%AC%AC%EB%B,B7%B0; |
| Distilbert:Bert的蒸馏版 | https://arxiv.org/abs/1910.01108 | https://cartinoe5930.tistory.com/entry/distilbert-a-distille-version-of-bert-smaller-faster-faster-cheaper-cheaper-cheaper-cheaper-and-light---- and-light-%EB%85%BC%BC%EB%AC%B8-%eb%EB%A6%A6%AC:2%AC%EB%B7%B7%B7%B0; |
| 重要的不仅很重要:小语言模型也很少是学习者(PET응용) | https://arxiv.org/abs/2009.07118 | https://cartinoe5930.tistory.com/entry/its-not-just-size-that-matter-mall-language-models-models-models-are-also-few-shot-shot-learners--phist-learners--eb%BC%85%BC%EB%EB%ACACB8-V8- |
| 纸张标题 | 纸或参考网站链接 | 纸质评论 |
|---|---|---|
| Chinchilla:培训的计算最佳大语模型 | https://arxiv.org/abs/2203.15556 | https://cartinoe5930.tistory.com/entry/%EC%A7%80%80%B8%88-%88-%B9%8C%EC%A7%80%E C%9D%98-LM-SCALING LAW%EC%97%97%90%EB%8A%94-%EB%AC%AC%EC%EC%A0%9c%EC%A0%A0%90%90%EC%9D%B4-- %EC%9E%88%EB%8B%A4-%F0%9F%98%B6%E2%80%8D%F0%9F%8C%AB%EF%B8%8F-Chinchilla-Training-Compute-Optimal-Large-Language-Models-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0 |
| 腓热:一套用于分析跨培训和扩展的大型语言模型的套件 | https://arxiv.org/abs/2304.01373 | 没有计划! |
| 利马:更少的是对齐 | https://arxiv.org/abs/2305.11206 | https://cartinoe5930.tistory.com/entry/lima-sir-is-is-more-for-alignment-alignment-prim; |
| 骆驼:开放有效的基础语言模型 | https://arxiv.org/abs/2302.13971 | https://cartinoe5930.tistory.com/entry/llama-open-and-foundation-foundation-language-models-models-models-%EB%85%BC%EB%ACACACB8-%EB%A6%AC%EB%EB%B7%B0; |
| wizardlm:授权大语言模型遵循复杂的说明 | https://arxiv.org/abs/2304.12244 | https://cartinoe5930.tistory.com/entry/open-domain-instruction%ec%9d%98-%98-%9a%A8%B3%B3%B3%B3%BC-%9F%AA%84-WIZ ARDLM授权的大量语言模型到遵循式 - 复合构建 - %EB%85%BC%EB%AC%AC%B8-%EB%A6%AC%AC%EB%B7%B7 |
| WizardCoder:通过Evol-Inscruct授权代码大语言模型 | https://arxiv.org/abs/2306.08568 | https://huggingface.co/wizardlm/wizardcoder-15b-v1.0 |
| 巫师:通过增强的Evol-Infruction赋予大语言模型的数学推理能力 | https://arxiv.org/abs/2308.09583 | https://huggingface.co/wizardlm/wizardmath-70b-v1.0 |
| 羊驼:强大的,可复制的指导跟踪模型 | https://crfm.stanford.edu/2023/03/13/alpaca.html | https://cartinoe5930.tistory.com/entry/alpaca-a-a-strong-replicable-rplicable-instruction-following-model-model-model-del-model-%a6%Acas%EB%B7%B0; |
| Vicuna:一个开源聊天机器人给GPT-4留下深刻印象 | https://lmsys.org/blog/2023-03-03-30-Vicuna/ | https://cartinoe5930.tistory.com/entry/vicuna-an-open-source-source-chatbot-impressing-gpt-4-; gpt-4-%EB%A6%AC%EB%B7%B0; |
| 考拉:学术研究对话模型 | https://bair.berkeley.edu/blog/2023/04/03/koala/ | https://cartinoe5930.tistory.com/entry/%EC%A4%91%EC%9A%9A%94%94%95%9C-%9C-%B1%B1%B4-%B4-%BA%BA%BE%ECB4; %A7%80-%EC%95%8A%EB%8A%94高质量data-koala%F0%9F%90%A8-A-Dialogue-Modegoge-Model-for-Academic-for-Academic-Arsearc |
| Baize:一个开源聊天模型,具有自chat数据的参数效率调整 | https://arxiv.org/abs/2304.01196 | https://cartinoe5930.tistory.com/entry/%F0%9f%90%90%B2BAIZE-AN-OPEN-SOURCE-CHAT-CHAT-CHAT-MODEL-WITH-PARAMETER--PARAMETER-FIFICE-TUNING-TUNING-on-self-Chat-chat-chat-chat-data-chat-data-chat-data-chat-data-%EB%8555555%BC%BC%ACB8-B8--eb%B; b; |
| 扩展数据受限的语言模型 | https://arxiv.org/abs/2305.16264 | https://www.youtube.com/watch?v=tk0-sitkcmw&pp=ygugahr0chm6ly9hcnhpdi5vcmcvcmcvywjzlzizmduumtyynjq%3d |
| Falcon&Repinedweb | https://arxiv.org/abs/2306.01116 | https://cartinoe5930.tistory.com/entry/open-llm-leaderboard%EB%A5%BC- %BC-%9C%A9C%A9%EC%93%B4-FALCON%F0%9f%A6%85-lllm-falcon-falcon-refelinedweb |
| ORCA:从GPT-4的复杂解释痕迹中进行渐进学习 | https://arxiv.org/pdf/2306.02707 | https://cartinoe5930.tistory.com/entry/%F0%9F%90%90%Acorca-progression-learning-from-complex-complex-explanation-traces-of-gpt-gpt-4-%EB%85%BC%BC%EB%B8- |
| PHI-1:您需要教科书 | https://arxiv.org/abs/2306.11644 | https://cartinoe5930.tistory.com/entry/ %%95%84%Ec9a%9A%94%94%95%95%9C-%B1B1%B4-%B4-%EC98%A4%EC%A7; %A4%80%EC%9D%98-%EB%8D%B0%EC%9D%B4%ED%84%B0%EB%BF%90-%F0%9F%93%96-phi-1-Textbooks-Are-All-You-Need-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0 |
| Alpagasus:培训一个更好的羊驼的数据 | https://arxiv.org/abs/2307.08701 | 稍后将上传! |
| 骆驼2:开放基础和微调聊天模型 | https://arxiv.org/abs/2307.09288 | https://cartinoe5930.tistory.com/entry/the-hopes-of-researchers-open-source-%F0%9f%A4%97-- %EC%97%B0%EA%B5%AC%EC%9E%90%EB%93%A4%EC%9D%9D%ED%9D%AC%AC%EB%A7%9D-source-source-%F0%F0%9F%9F%a4%97 |
| Platypus:快速,便宜且有力的LLMS | https://arxiv.org/abs/2308.07317 | 稍后将上传! |
| 代码骆驼:代码的开放基础模型 | https://arxiv.org/abs/2308.12950 | 没有计划 |
| FLM-101B:开放LLM以及如何以10万美元的预算培训 | https://arxiv.org/pdf/2309.03852 | 没有计划! |
| 教科书就是您需要的II:PHI-1.5技术报告 | https://arxiv.org/abs/2309.05463 | https://huggingface.co/microsoft/phi-1_5 |
| OpenChat:使用混合质量数据推进开源语言模型 | https://arxiv.org/abs/2309.11235 | https://github.com/imoneoi/openchat |
| Mistral 7b | https://arxiv.org/abs/2310.06825 | https://mistral.ai/news/announcing-mistral-7b/ |
| Prometheus:在语言模型中诱导细粒度的评估能力 | https://arxiv.org/abs/2310.08491 | https://huggingface.co/papers/2310.08491#652A8E7F30355BEBA68C1BE6 |
| Zephyr:直接蒸馏LM对齐 | https://arxiv.org/abs/2310.16944 | https://www.youtube.com/watch?v=tkzbg3mksio |
| ORCA2:教小语言模型如何推理 | https://arxiv.org/abs/2311.11045 | https://www.microsoft.com/en-us/research/blog/orca-2-teaching-small-language-models-models-how-to-reason/ |
| 猎鹰系列开放语言模型 | https://arxiv.org/abs/2311.16867 | 没有计划! |
| 太阳能10.7b:用简单而有效的深度缩放大型语言模型 | https://arxiv.org/abs/2312.15166 | 没有计划! |
| 纸张标题 | 纸或参考网站链接 | 纸质评论 |
|---|---|---|
| LAMDA:对话应用程序的语言模型 | 博客:https://ai.googleblog.com/2022/01/lamda-towards-safe-grounded-and-high.html,论文:https://arxiv.org/abs/2201.08239 | https://cartinoe5930.tistory.com/entry/%B5%AC%AC%B8%B8%80%EC9D%9D%98-%EC%B5%9C%9C%B0%95-%ECB1B1B1B1B1B1B1%97%EBB4; %80%ED%95%B4-%EC%95%8C%EC%95%84%EB%B3%B3%B4%EC%9E%90语言模型 - dialog-dialog-applications-%eb%EB%EB%85%BC%bc%eb%eb%AC%AC%AC%AC%AC%AC%B8-%EB%AC%AC%AC%AC%AC%AC%AC%B7%B7%B7 |
| 棕榈:用途径进行缩放语言建模 | 博客:https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html,论文:https://arxiv.org/abs/2204.022311 | 1: https://cartinoe5930.tistory.com/entry/lamda%Ecd%9d%98-%EB%92%92%A4%EB%A5%Bc- bc-; 99%9C%EC%9A%A9%ED%95%95%9C%EC%B4%B4%88%EA%B1%B0%B0%EB%8C%80-%EC%96%B8%EC%EC%96%B4-%B4%B4%EB%AA%AA%AA%aa a. 2: https://cartinoe5930.tistory.com/entry/lamda%Ec%9d%9d%98-%EB%92%92%A4%EB%A5%BC-C-- %B-; 82%AC%EC%9A%A9%ED%95%9C-%EC%B4%88%EA%B1%B0%B0%EB%8C%8C%80-%EC%96%B8%EC%96%B4-%B4%B4%B4%AA%aa%AA%aa aa aa aa a.8dd dd%b8 palm-%b8 palm-%b8 palm-%b8 palm%eb%eb%aC%eb%eb%eb%eb%eb%b7%b7%b7%b7%b02 |
| GPT-4:技术评论 | 博客:https://openai.com/research/gpt-4,论文:https://arxiv.org/abs/2303.08774 | https://cartinoe5930.tistory.com/entry/gpt-4-techinal-report-review |
| 双子座:一个高度强大的多模型的家族 | https://arxiv.org/abs/2312.11805 | 没有计划! |
| 字母2技术报告 | https://storage.googleapis.com/deepmind-media/alphacode2/alphacode2_tech_report.pdf | 没有计划! |
| 纸张标题 | 纸或参考网站链接 | 纸质评论 |
|---|---|---|
| Flan:微调语言模型是零摄的学习者 | https://arxiv.org/abs/2109.01652 | https://cartinoe5930.tistory.com/entry/flan-fine-tuned-language-models-models-aare-zero-sero-shot-learners-learners-learners-pimbc%BC%EB%AC%B8-%B8-%eb%A6%AC%AC%EB%B7%B0%B0; |
| T0:多任务提示培训可以启用零击任务概括 | https://arxiv.org/abs/2110.08207 | https://cartinoe5930.tistory.com/entry/t0-multitask-prompted-training-enables-zero-sero-sero-sero-sero-sero-sero-shot-task-generalization-dask-generalization-bc%85%BC%BC%EB%AC%B8-%EB8-: |
| 超自然说明:通过1600+ NLP任务的声明说明进行概括 | https://arxiv.org/abs/2204.07705 | https://cartinoe5930.tistory.com/entry/super-natural-instructions-generalization-gia-via-declarative-instructions-insustions-on-1600-nlp-tasks--tasks-pasks-inlp-tasks-eb%BC%85%BC%EB%EB%B; |
| 不自然的说明:使用(几乎)不是人工劳动的语言模型 | https://arxiv.org/abs/2212.09689 | 稍后将上传! |
| 猜猜指令!翻转学习使语言模型更强 | https://arxiv.org/abs/2210.02969 | https://cartinoe5930.tistory.com/entry/guess-the-sinstruction-flippertion-learning-makes-language-models-models-models-model-stronger-zer-stronger-stronger-stronger-strong-loshot-learners-phis-pimiseb%85%Bc%BC%EB%Ac 200- |
| 缩放指令 - 通信语言模型 | https://arxiv.org/abs/2210.11416 | https://cartinoe5930.tistory.com/entry/scaling-instruction-finetuned-language-models-models-models-%EB%85%BC%EB%EB%ACB8-%EB%A6%AC%EB%EB%B7%B0; |
| 探索培训专家语言模型比教学调整的好处 | https://arxiv.org/abs/2302.03202 | https://cartinoe5930.tistory.com/entry/Exploring-the-benefits-of-training-training-training-training-training-language-models-models-models-models-ober-instruction-tuning-tuning-duning-duning-duning-duning-duning-duning-dunis-85%Bc%Bc%Eb%Ac%B8-%EB/%EB%EB%A6%AC,eb%B7:B7:B7:B7:B7B7%B7; |
| ICIL:在文章中的教学学习 | https://arxiv.org/abs/2302.14691 | https://cartinoe5930.tistory.com/entry/icil-in-in-context-instext-instruction-learning-mearning-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0%B0; |
| 使用GPT-4进行指导调整 | https://arxiv.org/abs/2304.03277 | https://cartinoe5930.tistory.com/entry/instruction-tuning-with-with-gpt-4-pm%EB%85%BC%BC%AC%AC%B8-%EB%A6%AC%EB%B7%B0%B0 |
| FIP:固定输入参数化以进行有效提示 | https://aclanthology.org/2023.findings-acl.533.pdf | 稍后将上传! |
| Flacuna:使用Flan微调释放Vicuna的问题解决能力 | https://arxiv.org/abs/2307.02053 | 稍后将上传! |
| 也许只需要0.5%的数据:对低训练数据指导调整的初步探索 | https://arxiv.org/abs/2305.09246 | 稍后将上传! |
| 成为自我教育:引入最小的指示调整的早期停止标准 | https://arxiv.org/abs/2307.03692 | 稍后将上传! |
| 纸张标题 | 纸或参考网站链接 | 纸质评论 |
|---|---|---|
| RLHF(从人类反馈中学习) | https://huggingface.co/blog/rlhf | https://cartinoe5930.tistory.com/entry/%EC%82%AC%EB%9E%9E%8C%ECD%9D%98-%98-%94%BC%93%93%9C%EB%B0%B1B1B1%B1%ECM%9D%84 -%ED%86%B5%ED%95%9C-%EA B0%B0%95%ED%99%99%ED%95%99%EC%8A%B5-Forminforcement-fured-Formenting Learning-From-Human-Human-Feedback-Rlhf |
| 用语言模型的红色小组语言模型 | https://arxiv.org/abs/2202.03286 | https://cartinoe5930.tistory.com/entry/red-teaming-teaming-language-models-with-language-models-models-models-%EB%85%BC%EB%ACACB8-; |
| 指示:培训语言模型遵循人类反馈的指示 | https://arxiv.org/abs/2203.02155 | https://cartinoe5930.tistory.com/entry/instructgpt-training-training-models-models-models-to-follow-instructions-with-human-feedback-debback-%EB%85%BC%BC%EB%AC%B8-%EB8-: |
| 通过从人类反馈中学习的强化学习培训有用且无害的助手 | https://arxiv.org/abs/2204.05862 | https://cartinoe5930.tistory.com/entry/training-a-helpful-and-harmless-assistant--with-reinforecement-learning-from-human-feedback-feedback-feedback-d.bc%85%Bc%Bc%BC%BC%ACB8-%B8-%EB; |
| Alpacafarm:从人类反馈中学习的方法的模拟框架 | https://arxiv.org/abs/2305.14387 | 稍后将上传! |
| 几乎是:通过合成反馈对齐大语言模型 | https://arxiv.org/abs/2305.13735 | https://cartinoe5930.tistory.com/entry/aligning-large-lange-lange-models-models-though-synthetic-feedback-back-back-%eb%85%BC%EB%AC%B8-%EB8-%B8-% |
| 从人类反馈中学习的开放问题和强化学习的根本局限性 | https://arxiv.org/abs/2307.15217 | 稍后将上传! |
| RLAIF:通过AI反馈从人类反馈中缩放增强的学习 | https://arxiv.org/abs/2309.00267 | 没有计划! |
| steerlm:属性条件为SFT作为RLHF的(用户转速)替代品 | https://arxiv.org/abs/2310.05344 | 没有计划! |
| HelpSteer:Steerlm的多属性帮助数据集 | https://arxiv.org/abs/2311.09528 | 没有计划! |
| 纸张标题 | 纸或参考网站链接 | 纸质评论 |
|---|---|---|
| 适配器:NLP的参数效率学习 | https://arxiv.org/abs/1902.00751 | https://cartinoe5930.tistory.com/entry/%EB%8B%B9%EC%8B%A0%EB%8F%84-fine-tuning- %ED%95%A0-%EC%88%98-%EC%9E%88%EC%8A%B5%EB%8b%8B%88%EB%8B%A4-With-with-with-with-peft-%F0%9F%a4%97 |
| 前缀调整:优化发电的连续提示 | https://arxiv.org/abs/2101.00190 | https://cartinoe5930.tistory.com/entry/%EB%8B%B9%EC%8B%A0%EB%8F%84-fine-tuning- %ED%95%A0-%EC%88%98-%EC%9E%88%EC%8A%B5%EB%8b%8B%88%EB%8B%A4-With-with-with-with-peft-%F0%9F%a4%97 |
| 洛拉:大语言模型的低排名 | https://arxiv.org/abs/2106.09685 | https://cartinoe5930.tistory.com/entry/%EB%8B%B9%EC%8B%A0%EB%8F%84-fine-tuning- %ED%95%A0-%EC%88%98-%EC%9E%88%EC%8A%B5%EB%8b%8B%88%EB%8B%A4-With-with-with-with-peft-%F0%9F%a4%97 |
| 迈向参数效率转移学习的统一观点 | https://arxiv.org/abs/2110.04366 | 稍后将上传! |
| Unipelt:参数有效语言模型调整的统一框架 | https://arxiv.org/abs/2110.07577 | 稍后将上传! |
| (ia)^3:几乎没有参数效率的微调比在文化学习中更好,更便宜 | https://arxiv.org/abs/2205.05638 | 稍后将上传! |
| QLORA:量化LLM的有效微调 | https://arxiv.org/abs/2305.14314 | 稍后将上传! |
| 堆叠更多的层不同:通过低排名更新的高级培训 | https://arxiv.org/abs/2307.05695 | 稍后将上传! |
| Lorahub:通过动态洛拉组成有效的跨任务概括 | https://arxiv.org/abs/2307.13269 | 稍后将上传! |
| 纸张标题 | 纸或参考网站链接 | 纸质评论 |
|---|---|---|
| 指令挖掘:大语言模型的高质量指令数据选择 | https://arxiv.org/abs/2307.06290 | 没有计划! |
| 苏打水:社交常识性上下文化的百万级对话蒸馏 | https://arxiv.org/abs/2212.10465 | 没有计划! |
| mod:指导调整的面向模型的数据选择 | https://arxiv.org/abs/2311.15653 | 没有计划! |
| 超越人类数据:通过语言模型来扩展解决问题的自我训练 | https://arxiv.org/abs/2312.06585 | 没有计划! |
| MagicOder:源代码就是您所需要的 | https://arxiv.org/abs/2312.02120 | 没有计划! |
| WaveCoder:通过精制数据生成的广泛和多功能增强的指令调整 | https://arxiv.org/abs/2312.14187 | 没有计划! |
| 是什么使良好的数据保持对齐方式:对教学调整中自动数据选择的全面研究 | https://arxiv.org/abs/2312.15685 | 没有计划! |
| 纸张标题 | 纸或参考网站链接 | 纸质评论 |
|---|---|---|
| 什么是“及时工程”? | 查看我的博客! | https://cartinoe5930.tistory.com/entry/prompt-eendering%EC%9D%B4-%EB%AC%B4%EC%97%87%ECMEC9D%BC%BC%BC%B9%8C |
| COT:经过深思熟虑链的促使大语言模型引起推理 | 博客:https://ai.googleblog.com/2022/05/language-models-perform-reasoning-via.html,论文:https://arxiv.org/abs/2201.11903 | https://cartinoe5930.tistory.com/entry/lm%Ec%9D%B4-%EC%82%AC%AC%EB%9E%9E%9E%8C%B3%B3%BC-%BC-%9C%9C%A0%EC%82%82%82; %9C%EC%84%B8%EC%8A%A4%EB%A5%BC-%EA%B0%80%EC%A7%80%EA%B2%8C-%EB%90%9C%EB%8B%A4%EB%A9%B4-Chain-of-Thought-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0 |
| 零镜头婴儿床:大型语言模型是零击的推理器 | https://arxiv.org/abs/2205.11916 | https://cartinoe5930.tistory.com/entry/large-lange-models-models-are-zero-sero-sero--reasoners-jbc%85%BC%EB%ACB8-%EB%A6%AC%AC%EB%BX%B7%B0%B0; |
| 语言模型是多语言链的推理者 | https://arxiv.org/abs/2210.03057 | 稍后将上传! |
| 自动cot:自动思想链在大型语言模型中提示 | https://arxiv.org/abs/2210.03493 | 稍后将上传! |
| COT KD:教小语言模型以推理 | https://arxiv.org/abs/2212.08410 | 稍后将上传! |
| TOT:思想树:大型语言模型的故意解决问题 | https://arxiv.org/abs/2305.10601 | https://cartinoe5930.tistory.com/entry/tree/tree-of-thoughts-deliberate-problem-solving-with-large-lange-lange-lange-models-models-models-models-models-models-models-models-modelm%85%BC%BC%EB%AC%B8-%EB8-%EB%EB%A6%ACAC 200B%B7%B7%B0%B0; |
| COT集合:通过经过思考的微型调整改善语言模型的零拍摄和几乎没有射击的学习 | https://arxiv.org/abs/2305.14045 | https://cartinoe5930.tistory.com/entry/cot-collection-collection-improving-zero-sero-shot-shot-and-hot-few-shot--few-shot-learning of-language-models-models-models-via-chain of-thought-thought-thought-thought-tuning-tuning-puning-puning-duning-duning-%EB%85%BC%BC%EB%EB%ACACACB8-%B8-%B8-%Ac%Ac%B-7B8-; |
| 让我们逐步验证 | https://arxiv.org/abs/2305.20050 | https://cartinoe5930.tistory.com/entry/lets-verify-step-by-step-dep-%Eb%85%BC%BC%AC%AC%B8-%EB%A6%AC%EB%B7%B7%B0; |
| 衡量经济链推理中的相性 | https://arxiv.org/abs/2307.13702 | 稍后将上传! |
| SOT:经过思考的骨骼:大语言模型可以进行平行解码 | https://arxiv.org/abs/2307.15337 | 稍后将上传! |
| 思想图:解决大型语言模型的详尽问题 | https://arxiv.org/abs/2308.09687 | 稍后将上传! |
| 从稀疏到密集:GPT-4汇总,并链链链 | https://arxiv.org/abs/2309.04269 | 没有计划! |
| 验证链在大语言模型中唤起了幻觉 | https://arxiv.org/abs/2309.11495 | https://www.youtube.com/watch?v=l0zfjwregog&pp=ygugahr0chm6ly9hcnhpdi5vcmcvywjzlzizmdkumte0otu%3d |
| 对比度链的促使 | https://arxiv.org/abs/2311.09277 | 没有计划! |
| 思想界线解开混乱的环境 | https://arxiv.org/abs/2311.08734 | 没有计划! |
| 系统2注意(您也可能需要的东西) | https://arxiv.org/abs/2311.11829 | 没有计划! |
| 代码链:使用语言模型的代码模拟器推理 | https://arxiv.org/abs/2312.04474 | 没有计划! |
| 纸张标题 | 纸 | 纸质评论 |
|---|---|---|
| 闪存:快速且记忆效益的精确注意 | https://arxiv.org/abs/2205.14135 | https://gordicaleksa.medium.com/eli5-flash-astention-5c444017022ad |
| 指数级更快的语言建模 | https://arxiv.org/abs/2311.10770 | 没有计划! |
| 闪光灯中的LLM:有限的内存有效的大型语言模型推断 | https://arxiv.org/abs/2312.11514 | 没有计划! |
| 纸张标题 | 纸或参考网站链接 | 纸质评论 |
|---|---|---|
| NLP中的数据增强 | blogs: https://neptune.ai/blog/data-augmentation-nlp, https://amitness.com/2020/05/data-augmentation-for-nlp/?fbclid=IwAR11MkccCti-2cD93RYftNPHb7Wxdj7AlZG7NNG4EhPaBkmiJkcBPtdl1eo | https://cartinoe5930.tistory.com/entry/data-aigmentation-methods-in-nlp |
| 宠物:利用几张镜头文本分类和自然语言推断的披肩问题 | https://arxiv.org/abs/2001.07676 | https://cartinoe5930.tistory.com/entry/pet-exploiting-cloze-questions-for-for-for-for-few-shot-text-classification-and-natural-language-inference-inperion-inference-inperion-inperion-inperion-inperion-inperion-inperion-inperion-bc%85%Bc%BC%EB%ACB; |
| 途径 | https://blog.google/technology/ai/introducing-pathways-nextways-next-generation-ai-Architection/ | https://cartinoe5930.tistory.com/entry/%EB%A7%8c%95%BD-%BD-%AA; B0%81%EC%9D%84-%EB%8A%90%EB%82%82%84-%EC%88%98-%EC%9E%9E%88%EA%B2%B2%8C-%EB%90%90%9C%9C%EB%EB%EB%EB%A4%A4%EB%EB%EB%A9%A9%A9%B4-PATHWAYS-EB%B4-PATHWAREED-EB%A6%EB%a6%a6%AC%AC%AC%B7%B7%B7%B7 |
| LMSI:大型语言模型可以自我突破 | https://arxiv.org/abs/2210.11610 | https://cartinoe5930.tistory.com/entry/lmsi-large-lange-models-models-models-can-self-improve-%EB%85%BC%EB%ACB8-%B8-%EB%A6%AC%EB%EB%B7%B0%B0; |
| 自我建造:将语言模型与自我生成的指示结合 | https://arxiv.org/abs/2212.10560 | https://cartinoe5930.tistory.com/entry/self-instruct-aligning-language-model-model-with-self-generated-instructions-instructions-minstructions-dimstructions-pimbc%85%BC%EB%AC%AC%B8-%EB; |
| 反射:语言加强学习的语言代理商 | https://arxiv.org/abs/2303.11366 | https://cartinoe5930.tistory.com/entry/reflexion-language-agents-with-verbal-reinforcement-learning-learning-learning-learning-eb%85%BC%EB%AC%B8-%B8-%eb%A6%AC%AC%EB%EB%B7%B0%B0 |
| 自我refine:迭代精致和自我反馈 | https://arxiv.org/abs/2303.17651 | https://cartinoe5930.tistory.com/entry/self-refine-iterative-refinement-with-self-self-feedback-debback-%EB%85%BC%EB%AC%B8-%Eb%A6%AC%AC%EB%EB%B7%B0%B0; |
| 炼油厂:中间表示的推理反馈 | https://arxiv.org/abs/2304.01904 | 没有计划! |
| 自由:迭代自我申请LLM由自我反馈生成升级 | https://kaistai.github.io/selfee/ | https://cartinoe5930.tistory.com/entry/selfee-iterative-self-revisis--revising-llm-expate-by-self-feedback-generation-eb%85%Bc%BC%EB%Ac%B8-%EB8-%EB%A6%ACMAC%EB%B7%B7%B7%B0%B0; |
| GQA:培训多头检查点的通用多电量变压器模型 | https://arxiv.org/abs/2305.13245 | https://aliissa99.medium.com/-A596E4D86F79 |
| Shpherd:语言模型生成的评论家 | https://arxiv.org/abs/2308.04592 | 稍后将上传! |
| 自我调整与教学反向翻译 | https://arxiv.org/pdf/2308.06259 | 稍后将上传! |
| 螺丝:通过修订的模块化框架 | https://arxiv.org/pdf/2309.13075 | 没有计划! |
| Neftune:嘈杂的嵌入式嵌入改善教学方法 | https://arxiv.org/abs/2310.05914 | https://cartinoe5930.tistory.com/entry/noise-makes-llm-better-neftune-%F0%9F%98%89 |
| 语言模型是超级马里奥;来自同源模型的吸收能力作为免费午餐 | https://arxiv.org/abs/2311.03099 | 没有计划! |
| Loramoe:革新专家的混合物,以维持世界知识在语言模型时 | https://arxiv.org/abs/2312.09979 | 没有计划! |
| 纸张标题 | 纸或参考网站链接 | 纸质评论 |
|---|---|---|
| 用于知识密集型NLP任务的检索生成一代 | https://arxiv.org/abs/2005.11401 | 没有计划! |
| 自我剥离:学会通过自我反省来检索,产生和批评 | https://arxiv.org/abs/2310.11511 | 没有计划! |
| 仪表盘:指导调整后检索预告片 | https://arxiv.org/abs/2310.07713 | 没有计划! |
| 大型语言模型的检索演示一代:一项调查 | https://arxiv.org/abs/2312.10997 | 没有计划! |
| 纸张标题 | 纸或参考网站链接 | 纸质评论 |
|---|---|---|
| 大板凳艰难:具有挑战性的大台任务以及经过思考链是否可以解决THAM | https://arxiv.org/abs/2210.09261 | 稍后将上传! |
| 大型语言模型不是公平的评估者 | https://arxiv.org/abs/2305.17926 | 稍后将上传! |
| MT-Bench: Judging LLM-as-a-judge with MT-Bench | https://arxiv.org/abs/2306.05685 | 稍后将上传! |
| 讲座:朝着教学调节的大语言模型的整体评估 | https://arxiv.org/abs/2306.04757 | 稍后将上传! |
| FLASK: Fine-grained Language Model Evaluation based on Alignment Skill Sets | https://arxiv.org/abs/2307.10928 | Will be uploaded later! |
| GAIA: A Benchmark for General AI Assistants | https://arxiv.org/abs/2311.12983 | No plan! |
| 纸张标题 | Paper or reference site Link | Paper Review |
|---|---|---|
| A Length-Extrapolatable Transformer | https://arxiv.org/abs/2212.10554 | No plan! |
| Extending Context Window of Large Language Models via Positional Interpolation | https://arxiv.org/abs/2306.15595 | https://cartinoe5930.tistory.com/entry/LM%EC%9D%98-context-window-%EA%B8%B8%EC%96%B4%EC%95%BC-%ED%95%A0%EA%B9%8C-%EC%A7%A7%EC%95%84%EC%95%BC-%ED%95%A0%EA%B9%8C-%F0%9F%93%8F%F0%9F%A4%A8 |
| LongNet: Scaling Transformers to 1,000,000,000 Tokens | https://arxiv.org/abs/2307.02486 | https://cartinoe5930.tistory.com/entry/LM%EC%9D%98-context-window-%EA%B8%B8%EC%96%B4%EC%95%BC-%ED%95%A0%EA%B9%8C-%EC%A7%A7%EC%95%84%EC%95%BC-%ED%95%A0%EA%B9%8C-%F0%9F%93%8F%F0%9F%A4%A8 |
| Lost in the Middle: How Language Models Use Long Contexts | https://arxiv.org/abs/2307.03172 | https://cartinoe5930.tistory.com/entry/LM%EC%9D%98-context-window-%EA%B8%B8%EC%96%B4%EC%95%BC-%ED%95%A0%EA%B9%8C-%EC%A7%A7%EC%95%84%EC%95%BC-%ED%95%A0%EA%B9%8C-%F0%9F%93%8F%F0%9F%A4%A8 |
| YaRN: Efficient Context Window Extension of Large Language Models | https://arxiv.org/abs/2309.00071 | No plan! |
| 纸张标题 | Paper or reference site Link | Paper Review |
|---|---|---|
| Why can GPT learn in-context? | https://arxiv.org/abs/2212.10559 | https://cartinoe5930.tistory.com/entry/Why-can-GPT-learn-in-context-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0 |
| Sparks of Artificial General Intelligence: Early experiments with GPT-4 | paper: https://arxiv.org/abs/2303.12712, youtube: https://www.youtube.com/watch?v=Mqg3aTGNxZ0 | https://cartinoe5930.tistory.com/entry/Sparks-of-Artificial-General-Intelligence-Early-experiments-with-GPT-4-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0 |
| The False Promise of Imitating Proprietary LLMs | https://arxiv.org/abs/2305.15717 | https://cartinoe5930.tistory.com/entry/%EA%B8%B0%EC%A1%B4-imitation-model%EC%9D%80-%EC%9E%98%EB%AA%BB-%ED%95%99%EC%8A%B5%EB%90%98%EA%B3%A0-%EC%9E%88%EB%8B%A4-%F0%9F%AB%A2-The-False-Promise-of-Imitating-Proprietary-L |
| TULU: How Far Can Camels Go? Exploring the State of Instructiopn Tuning on Open Resources | https://arxiv.org/abs/2306.04751 | Will be uploaded later! |
| How Is ChatGPT's Behavior Changing over Time? | https://arxiv.org/abs/2307.09009 | https://cartinoe5930.tistory.com/entry/ChatGPT%EC%9D%98-%EC%84%B1%EB%8A%A5%EC%9D%B4-%EC%95%88-%EC%A2%8B%EC%95%84%EC%A7%80%EA%B3%A0-%EC%9E%88%EB%8B%A4%EA%B5%AC-%F0%9F%98%B2%F0%9F%98%B2 |
| Large Language Models Cannot Self-Correct Reasoning Yet | https://arxiv.org/abs/2310.01798 | |
| How Far Are Large Language Models from Agents with Theory-of-Mind | https://arxiv.org/pdf/2310.03051 | No plan! |
| Can LLMs Follow Simple Rules | https://arxiv.org/abs/2311.04235 | https://www.youtube.com/watch?v=CY6o43037OY |
| Camels in a Changing Climate; Enhancing LM Adaptation with Tulu 2 | https://arxiv.org/abs/2311.10702 | No plan! |
| ChatGPT's One-year Anniversary; Are Open-Source Large Language Models Catching up | https://arxiv.org/abs/2311.15653 | No plan! |
| An In-depth Look at Gemini's Language Abilities | https://arxiv.org/abs/2312.11444 | No plan! |
| 纸张标题 | Paper or reference site Link | Paper Review |
|---|---|---|
| DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature | https://arxiv.org/abs/2301.11305 | https://cartinoe5930.tistory.com/entry/%EC%9D%B4-%EA%B8%80%EC%9D%B4-LM%EC%9D%B4-%EB%A7%8C%EB%93%A4%EC%96%B4%EB%82%B8-%EA%B8%80%EC%9D%BC%EA%B9%8C-%EB%8F%84%EC%99%80%EC%A4%98-DetectGPT-DetectGPT-Zero-Shot-Machine-Generated-Text-Detection-using-Probability-Curvature-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0 |
| Check Your Facts and Try Again: Improving Large Language Models with External Knowledge and Automated Feedback | https://arxiv.org/abs/2302.12813 | https://cartinoe5930.tistory.com/entry/ChatGPT%EC%9D%98-hallucination-%EC%96%B4%EB%96%BB%EA%B2%8C-%ED%95%B4%EA%B2%B0%ED%95%B4%EC%95%BC-%ED%95%A0%EA%B9%8C-Check-Your-Facts-and-Try-Again-Improving-Large-Language-Models-with-External-Knowledge-and-Automated-Feedback |
| RecurrentGPT: Interactive Generation of (Arbitrarily) Long Text | https://arxiv.org/abs/2305.13304 | https://cartinoe5930.tistory.com/entry/ChatGPT%EC%97%90-%EB%B0%98%EB%B3%B5-%EB%A9%94%EC%BB%A4%EB%8B%88%EC%A6%98LSTM%EC%9D%84-%EC%82%AC%EC%9A%A9%ED%95%9C%EB%8B%A4%EB%A9%B4-RecurrentGPT-Interactive-Generation-of-Arbitrarily-Long-Text-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0 |
| Large Language Models as Tool Makers | https://arxiv.org/abs/2305.17126 | https://cartinoe5930.tistory.com/entry/LM%EC%9D%B4-%EB%8F%84%EA%B5%AC%EB%A5%BC-%EC%82%AC%EC%9A%A9%ED%95%98%EA%B2%8C-%EB%90%9C%EB%8B%A4%EB%A9%B4-%F0%9F%94%AC-Large-Language-Models-as-Tool-Makers-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0 |
| LLM-Blender: Ensembling Large Language Models with Pairwise Ranking and Generative Fusion | https://arxiv.org/abs/2306.02561 | No plan! |
| 大型语言模型的知识蒸馏 | https://arxiv.org/abs/2306.08543 | https://cartinoe5930.tistory.com/entry/KD%EC%97%90-%EC%82%B4%EC%A7%9D%EC%9D%98-%EB%B3%80%ED%99%94%EB%A5%BC-%EC%A4%98%EB%B3%B4%EC%9E%90-%F0%9F%98%9C-Knowledge-Distillation-of-Large-Language-Models-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0 |
| Scaling Relationship on Learning Mathematical Reasoning with Large Language Models | https://arxiv.org/abs/2308.01825 | Will be uploaded later! |
| ToolLLM: Facilitating Lare Language Models to Master 16000+ Real-World APIs | https://arxiv.org/abs/2307.16789 | Will be uploaded later! |
| SelfCheck: Using LLMs to Zero-shot Check Their Own Step-by-Step Reasoning | https://arxiv.org/abs/2308.00436 | Will be uploaded later! |
| Solving Challenging Math Word Problems Using GPT-4 Code Interpreter with Code-based Self-Verification | https://arxiv.org/abs/2308.07921 | Will be uploaded later! |
| Large Language Models as Optimizers | https://arxiv.org/abs/2309.03409 | No plan! |
| FIAT: Fusing Learning Paradigms with Instruction-Accelerated Tuning | https://arxiv.org/abs/2309.04663 | https://www.youtube.com/watch?v=EZsZEcRDte0&pp=ygUgaHR0cHM6Ly9hcnhpdi5vcmcvYWJzLzIzMDkuMDQ2NjM%3D |
| Contrastive Decoding Improves Reasoning in Large Language Models | https://arxiv.org/abs/2309.09117 | https://www.youtube.com/watch?v=nMR56TkwC1Q&pp=ygUgaHR0cHM6Ly9hcnhpdi5vcmcvYWJzLzIzMDkuMDkxMTc%3D |
| Think before you speak: Training Language Models with Pause Tokens | https://arxiv.org/abs/2310.02226 | https://www.youtube.com/watch?v=MtJ1jacr_yI |
| Large Language Models Can Learn Rules | https://arxiv.org/abs/2310.07064 | No plan! |
| In-context Pretraining: Language Modeling Beyond Document Boundaries | https://arxiv.org/abs/2310.10638 | https://www.youtube.com/watch?v=GI-0lAaILrU |
| Learning From Mistakes Makes LLM Better Reasoner | https://arxiv.org/abs/2310.20689 | No plan! |
| Language Models can be Logical Solvers | https://arxiv.org/abs/2311.06158 | No plan! |
| MART: Improving LLM Safety with Multi-round Automatic Red-Teaming | https://arxiv.org/abs/2311.07689 | No plan! |
| Fine-tuning Language Models for Factuality | https://arxiv.org/abs/2311.08401 | No plan! |
| Positional Description Matters for Transformers Arithmetic | https://arxiv.org/abs/2311.14737 | No plan! |
| Weak-to-Strong Generalization: Eliciting Strong Capabilities with Weak Supervision | https://arxiv.org/abs/2312.09390 | https://openai.com/research/weak-to-strong-generalization |
| TinyGSM: achieving higher than 80 percentage on GSM8k with small language models | https://arxiv.org/abs/2312.09241 | No plan! |
| 纸张标题 | Paper or reference site Link | Paper Review |
|---|---|---|
| Morpheme-aware Subword Tokenizer: An Empirical Study of Tokenization Strategies for Various Korean NLP Tasks | https://arxiv.org/abs/2010.02534 | Will be uploaded later! |
| What Changes Can Large-scale Language Models Bring? Intensive Study on HyperCLOVA: Billions-scale Korean Generative Pretrained Transformers | https://arxiv.org/abs/2109.04650 | Will be uploaded later! |
| 纸张标题 | Paper or reference site Link | Paper Review |
|---|---|---|
| history of CNN | LeNet, AlexNet, VGGNet, GoogLeNet, ResNet, ResNeXt, Sception, Mobilenet, DenseNet, EfficientNet, ConvNext | https://cartinoe5930.tistory.com/entry/CNN-network%EC%9D%98-%EC%97%AD%EC%82%AC |
| ViT: An Image Worth 16 x 16 Words: Transformers for Image Recognition at Scale | https://arxiv.org/abs/2010.11929 | https://cartinoe5930.tistory.com/entry/ViT-An-Image-Worth-16-x-16-Words-Transformers-for-Image-Recognition-at-Scale |
| Swin Transformer: Hierarchical Vision Transformer using Shifted Winodws | https://arxiv.org/abs/2103.14030 | https://cartinoe5930.tistory.com/entry/Swin-Transformer-Hierarchical-Vision-Transformer-using-Shifted-Windows-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0 |
| CLIP: Learning Transferable Visual Models From Natural Language Supervision | https://arxiv.org/abs/2103.00020 | https://cartinoe5930.tistory.com/entry/CLIP-Learning-Transferable-Visual-Models-From-Natural-Language-Supervision-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0 |
| 纸张标题 | Paper or reference site Link | Paper Review |
|---|---|---|
| Let's learn about VLM(Visual-Language Model) | https://huggingface.co/blog/vision_language_pretraining#supporting-vision-language-models-in-%F0%9F%A4%97-transformers | https://cartinoe5930.tistory.com/entry/VLMVision-Language-Model%EC%97%90-%EB%8C%80%ED%95%B4-%EC%95%8C%EC%95%84%EB%B3%B4%EC%9E%90 |
| VisualBERT: A simple and Performant Baseline for Vision and Language | https://arxiv.org/abs/1908.03557 | https://cartinoe5930.tistory.com/entry/VisualBERT-A-Simple-and-Performant-Baseline-for-Vision-and-Language-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0 |
| ViLBERT: Pre-training Task-Agnostic Visiolinguistic Representations for Visual-and-Language Tasks | https://arxiv.org/abs/1908.02265 | https://cartinoe5930.tistory.com/entry/ViLBERT-Pretraining-Task-Agnostic-Visiolinguistic-Representations-for-Visual-and-Language-Tasks |
| LXMERT: Learning Cross-Modality Encoder Representations from Transformers | https://arxiv.org/abs/1908.07490 | https://cartinoe5930.tistory.com/entry/LXMERT-Learning-Cross-Modality-Encoder-Representations-from-Transformers-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0 |
| VL-BERT: Pre-training of Generic Visual-Linguistic Representations | https://arxiv.org/abs/1908.08530 | https://cartinoe5930.tistory.com/entry/VL-BERT-Pre-training-of-Generic-Visual-Linguistic-Representations-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0 |
| VLP: Unified Vision-Language Pre-Training for Image Captioning and VQA | https://arxiv.org/abs/1909.11059 | https://cartinoe5930.tistory.com/entry/VLP-Unified-Vision-Language-Pre-Traning-for-Image-Captioning-and-VQA-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0 |
| Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks | https://arxiv.org/abs/2004.06165 | https://cartinoe5930.tistory.com/entry/Oscar-Object-Semantics-Aligned-Pre-training-for-Vision-Language-Tasks-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0 |
| VinVL: Revisiting Visual Representations in Vision-Language Models | https://arxiv.org/abs/2101.00529 | https://cartinoe5930.tistory.com/entry/VinVL-Revisiting-Visual-Representations-in-Vision-Language-Models-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0 |
| ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision | https://arxiv.org/abs/2102.03334 | https://cartinoe5930.tistory.com/entry/ViLT-Vision-and-Language-Transformer-Without-Convolution-or-Region-Supervision-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0 |
| ALIGN: Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision | https://arxiv.org/abs/2102.05918 | https://cartinoe5930.tistory.com/entry/ALIGN-Scaling-up-Visual-and-Vision-Language-Representation-with-Noisy-Text-Supervision-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0 |
| ALBEF: Vision and Language Representation Learning with Momentum Distillation | https://arxiv.org/abs/2107.07651 | https://cartinoe5930.tistory.com/entry/ALBEF-Vision-and-Language-Representation-Learning-with-Momentum-Distillation-%EB%85%BC%EB%AC%B8 |
| SimVLM: Simple Visual Language Model Pretraining with Weak Supervision | https://arxiv.org/abs/2108.10904 | https://cartinoe5930.tistory.com/entry/SimVLM-Simple-Visual-Language-Model-Pre-training-with-Weak-Supervision-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0 |
| VLMo: Unified Vision-Language Pre-training with Mixture-of-Modality-Experts | https://arxiv.org/abs/2111.02358 | https://cartinoe5930.tistory.com/entry/VLMo-Unified-Vision-Language-Pre-training-with-Mixture-of-Modality-Experts-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0 |
| LiT : Zero-Shot Transfer with Locked-image text Tuning | https://arxiv.org/abs/2111.07991 | https://cartinoe5930.tistory.com/entry/LiT%F0%9F%94%A5-Zero-Shot-Transfer-with-Locked-image-text-Tuning-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0 |
| FLAVA: A Foundational Language And Vision Alignment Model | https://arxiv.org/abs/2112.04482 | https://cartinoe5930.tistory.com/entry/FLAVA-A-Foundational-Language-And-Vision-Alignment-Model-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0 |
| BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation | https://arxiv.org/abs/2201.12086 | https://cartinoe5930.tistory.com/entry/BLIP-Bootstrapping-Language-Image-Pre-training-fro-Unified-Vision-Language-Understanding-and-Generation-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0 |
| Paper or Posting Title | reference site Link | 审查 |
|---|---|---|
| Knowledge Distillation: Distilling the Knowledge in a Neural Network | https://arxiv.org/abs/1503.02531 | https://cartinoe5930.tistory.com/entry/Distilling-the-Knowledge-in-a-Neural-Network-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0 |
| What is Zero-shot, One-shot, Few-shot Learning? | see my blog! | https://cartinoe5930.tistory.com/entry/Zero-shot-One-shot-Few-shot-Learning%EC%9D%B4-%EB%AC%B4%EC%97%87%EC%9D%BC%EA%B9%8C |