sentimentizer
1.0.0
Beta版本,API可能会更改。安装以下安装:
pip install sentimentizer
该回购包含用Pytorch框架编写的神经网,以进行情感分析。小型模型对于分类任务的部署成本要小得多,可以非常有效。该软件包的重点是情感分析,所有模型均在几分钟内对单个2080TI GPU进行了培训。为推理部署模型需要少于1GB的内存,这使得创建多个容器相对高效。
# where 0 is very negative and 1 is very positive
from sentimentizer.tokenizer import get_trained_tokenizer
from sentimentizer.models.rnn import get_trained_model
model = get_trained_model(64, 'cpu')
tokenizer = get_trained_tokenizer()
review_text = "greatest pie ever, best in town!"
positive_ids = tokenizer.tokenize_text(review_text)
model.predict(positive_ids)
>> tensor(0.9701)
conda create -n {env}
conda install pip
pip install -e .
重新运行模型: