safetensors_util
1.0.0
这是一个轻巧的实用程序,用于仅用Python编写的SafetEnsors文件(没有主要的外部依赖项)。目前,它可以执行以下操作:
Usage: safetensors_util.py [OPTIONS] COMMAND [ARGS]...
Options:
--version Show the version and exit.
-q, --quiet quiet mode, don't print informational stuff
--help Show this message and exit.
Commands:
checklora see if input file is a SD 1.x LoRA file
extractdata extract one tensor and save to file
extracthdr extract file header and save to output file
header print file header
listkeys print header key names (except __metadata__) as a Python list
metadata print only __metadata__ in file header
writemd read __metadata__ from json and write to safetensors file
最有用的事情可能是读写元数据命令。阅读元数据:
python safetensors_util.py metadata input_file.safetensors -pm
许多SafetEnsors文件,尤其是LORA文件,在文件标头中都有一个__ metadata__字段,记录培训信息,例如学习率,时代数量,所使用的图像数量等。您可以看到您喜欢的文件是如何经过培训的,并且可能将来对您自己的模型使用一些培训参数。
可选的-PM标志旨在使输出更可读。因为SafetEnsors文件仅允许在元数据中允许字符串到字符串字典,因此必须引用非弦乐值。基本上-PM标志试图转动以下方式:
"ss_dataset_dirs":"{"abc": {"n_repeats": 2, "img_count": 60}}",
介入:
"ss_dataset_dirs":{
"abc":{
"n_repeats":2,
"img_count":60
}
},
您可以创建一个包含__ metadata__ __输入的JSON文件:
{
"__metadata__":{
"Description": "Stable Diffusion 1.5 LoRA trained on cat pictures",
"Trigger Words":["cat from hell","killer kitten"],
"Base Model": "Stable Diffusion 1.5",
"Training Info": {
"trainer": "modified Kohya SS",
"resolution":[512,512],
"lr":1e-6,
"text_lr":1e-6,
"schedule": "linear",
"text_scheduler": "linear",
"clip_skip": 0,
"regularization_images": "none"
},
"ss_network_alpha":16,
"ss_network_dim":16
}
}
并使用writemd命令将其写入SafetEnsors文件标头:
python safetensors_util.py writemd input.safetensors input.json output.safetensors