CDFSE_FastSpeech2
1.0.0
该仓库包含伴随论文“与内容相关的细粒扬声器嵌入以零摄像器的扬声器适应在文本到语音合成中”的代码,该代码基于Ming024/fastspeech2(非常感谢!)实现。
2022-06-15更新:这项工作已被接受为Interspeech 2022。
pip3 install -r requirements.txt有关更多详细信息,请参考Ming024/fastspeech2。
例如,
python3 prepare_align.py config/AISHELL3/preprocess.yaml然后下载textgrid文件或使用MFA对齐语料库,然后将TextGrid文件放入[PrepRocessed_data_path]中,例如PrepRocessed_data/aishell3/textgrid/。
最后,运行预处理脚本
python3 preprocess.py config/AISHELL3/preprocess.yaml此外:
训练模型
python3 train.py -p config/AISHELL3/preprocess.yaml -m config/AISHELL3/model.yaml -t config/AISHELL3/train.yaml 指出:如果您发现PHNCLS损失似乎并没有趋于趋势或不明显,请尝试在文本/符号中手动调整符号命令。
(可选)使用张板
tensorboard --logdir output/log/AISHELL3批次
python3 synthesize.py --source synbatch_chinese.txt --restore_step 250000 --mode batch -p config/AISHELL3/preprocess.yaml -m config/AISHELL3/model.yaml -t config/AISHELL3/train.yaml 单一
# For Mandarin
python3 synthesize.py --text "清华大学人机语音交互实验室,聚焦人工智能场景下的智能语音交互技术研究。 " --ref [REF_SPEECH_PATH.wav] --restore_step 250000 --mode single -p config/AISHELL3/preprocess.yaml -m config/AISHELL3/model.yaml -t config/AISHELL3/train.yaml
# For English
python3 synthesize.py --text " Human Computer Speech Interaction Lab at Tsinghua University, targets artificial intelligence technologies for smart voice user interface. " --ref [REF_SPEECH_PATH.wav] --restore_step 250000 --mode single -p config/LibriTTS/preprocess.yaml -m config/LibriTTS/model.yaml -t config/LibriTTS/train.yaml @misc{zhou2022content,
title={Content-Dependent Fine-Grained Speaker Embedding for Zero-Shot Speaker Adaptation in Text-to-Speech Synthesis},
author={Zhou, Yixuan and Song, Changhe and Li, Xiang and Zhang, Luwen and Wu, Zhiyong and Bian, Yanyao and Su, Dan and Meng, Helen},
year={2022},
eprint={2204.00990},
archivePrefix={arXiv},
primaryClass={eess.AS}
}